16 research outputs found

    EFFECT OF SOIL TYPE AND HYDROLOGY ON THE COMPOSITION OF NITROGEN GASES EMITTED FROM RIPARIAN BUFFERS

    Get PDF
    poster abstractThe US Corn Belt States are the leading contributors to nitrate (NO3-) enrichment and the so-called dead-zone in the Gulf of Mexico. Located at the interface between agricultural fields and surface water bodies, riparian buffers have shown great capacity to remove NO3- from agricultural runoff, and thus reduce fertilizer N export to streams. Under the right conditions (organic carbon, moist to wet soils), riparian soil microbes can convert NO3- into nitrous oxide (N2O) and dinitrogen (N2).However, from an air quality standpoint, a low N2O production relative to N2 (mole fraction of N2O) would be preferred because N2O contributes to the greenhouse effect and depletion of the ozone layer, With the hypothesis that frequent water saturation is favorable to the reduction of N2O into N2 (thus a low N2O mole fraction), a study was conducted to identify controlling factors of N2O mole fraction across various riparian buffers, including well-drained (WR), artificially-drained (LWD), and poorly-drained (SF) sites. The relative production of N2O and N2 was measured in the laboratory using the acetylene (C2H2) block technique. In the absence of C2H2, there was no difference in N2O production rate among the sites. However, in the presence of C2H2, N2O production at SF (30 ÎŒg N2O kg-1 soil h-1) was much higher than at the other sites (3.31 at LWD and 8.42 at WR). Conversely, the N2O mole fraction at SF (0.11) was lower than at WR (0.28). These results are consistent with the greater soil moisture, and higher total soil organic C at SF compared to the other sites. The low N2O production at LWD is probably due to the presence of tile drains and infrequent soil saturation. Future studies will examine the impact of tile-drain on the composition of N gases from these types of buffers

    A meta-analysis of pesticide loss in runoff under conventional tillage and no-till management

    Get PDF
    Global agricultural intensification has led to increased pesticide use (37-fold from 1960 to 2005) and soil erosion (14% since 2000). Conservation tillage, including no-till (NT), has been proposed as an alternative to conventional plow till (PT) to mitigate soil erosion, but past studies have reported mixed results on the effect of conservation tillage on pesticide loss. To explore the underlying factors of these differences, a meta-analysis was conducted using published data on pesticide concentration and load in agricultural runoff from NT and PT fields. Peer-reviewed articles (1985–2016) were compiled to build a database for analysis. Contrary to expectations, results showed greater concentration of atrazine, cyanazine, dicamba, and simazine in runoff from NT than PT fields. Further, we observed greater load of dicamba and metribuzin, but reduced load of alachlor from NT fields. Overall, the concentration and the load of pesticides were greater in runoff from NT fields, especially pesticides with high solubility and low affinity for solids. Thus, NT farming affects soil properties that control pesticide retention and interactions with soils, and ultimately their mobility in the environment. Future research is needed for a more complete understanding of pesticide-soil interactions in NT systems. This research could inform the selection of pesticides by farmers and improve the predictive power of pesticide transport models

    Responses of soil carbon sequestration to climate-smart agriculture practices: A meta-analysis

    Get PDF
    Climate-smart agriculture (CSA) management practices (e.g., conservation tillage, cover crops, and biochar applications) have been widely adopted to enhance soil organic carbon (SOC) sequestration and to reduce greenhouse gas emissions while ensuring crop productivity. However, current measurements regarding the influences of CSA management practices on SOC sequestration diverge widely, making it difficult to derive conclusions about individual and combined CSA management effects and bringing large uncertainties in quantifying the potential of the agricultural sector to mitigate climate change. We conducted a meta-analysis of 3,049 paired measurements from 417 peer-reviewed articles to examine the effects of three common CSA management practices on SOC sequestration as well as the environmental controlling factors. We found that, on average, biochar applications represented the most effective approach for increasing SOC content (39%), followed by cover crops (6%) and conservation tillage (5%). Further analysis suggested that the effects of CSA management practices were more pronounced in areas with relatively warmer climates or lower nitrogen fertilizer inputs. Our meta-analysis demonstrated that, through adopting CSA practices, cropland could be an improved carbon sink. We also highlight the importance of considering local environmental factors (e.g., climate and soil conditions and their combination with other management practices) in identifying appropriate CSA practices for mitigating greenhouse gas emissions while ensuring crop productivity

    Conservation tillage increases corn and soybean water productivity across the Ohio River Basin

    Get PDF
    Optimizing agricultural management practices is imperative for ensuring food security and building climate-resilient agriculture. The past several decades have witnessed the emergence of conservation tillage practices to combat soil erosion and degradation. However, the effects of conservation tillage on crop water productivity (CWP) remain uncertain, especially from a regional-scale perspective. Here, we used an improved process-based agroecosystem model (DLEM-Ag) to quantify the long-term effects of conservation tillage (e.g., no-tillage, NT; reduced tillage, RT) on CWP (defined as the ratio of crop productivity to evapotranspiration) of corn and soybean across the Ohio River Basin during 1979–2018. Our results revealed an average increase of 2.8% and 8.4% in CWP for corn and soybean, respectively, under the NT adoption scenario. Compared to the conventional tillage scenario, NT and RT would enhance CWP, primarily due to reductions in evapotranspiration, particularly evaporation. Further analysis suggested that, although NT and RT may decrease surface runoff, these practices could also increase subsurface drainage and nutrient loss from corn and soybean farmland via leaching. These results indicate that conservation tillage should be complemented with additional water and nutrient management practices to enhance soil water retention and optimize nutrient use in the region's cropland. Our findings also provide unique insights into optimizing management practices for other areas where conservation tillage is widely applied

    Variations in the light absorption coefficients of phytoplankton, non-algal particles and dissolved organic matter in reservoirs across China

    Get PDF
    Reservoirs were critical sources of drinking water for many large cities around the world, but progress in the development of large-scale monitoring protocols to obtain timely information about water quality had been hampered by the complex nature of inland waters and the various optical conditions exhibited by these aquatic ecosystems. In this study, we systematically investigated the absorption coefficient of different optically-active constituents (OACs) in 120 reservoirs of different trophic states across five eco-regions in China. The relationships were found between phytoplankton absorption coefficient at 675 nm (aph (675)) and Chlorophyll a (Chla) concentration in different regions (R2:0.60-0.82). The non-algal particle (NAP) absorption coefficient (aNAP) showed an increasing trend for reservoirs with trophic states. Significant correlation (p < 0.05) was observed between chromophoric dissolved organic matter (CDOM) absorption and water chemical parameters. The influencing factors for contributing the relative proportion of OACs absorption including the hydrological factors and water quality factors were analyzed. The non-water absorption budget from our data showed the variations of the dominant absorption types which underscored the need to develop and parameterize region-specific bio-optical models for large-scale assessment in water reservoirs

    The regional and global significance of nitrogen removal in lakes and reservoirs

    Get PDF
    Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Biogeochemistry 93 (2009): 143-157, doi:10.1007/s10533-008-9272-x.Human activities have greatly increased the transport of biologically available N through watersheds to potentially sensitive coastal ecosystems. Lentic water bodies (lakes and reservoirs) have the potential to act as important sinks for this reactive N as it is transported across the landscape because they offer ideal conditions for N burial in sediments or permanent loss via denitrification. However, the patterns and controls on lentic N removal have not been explored in great detail at large regional to global scales. In this paper we describe, evaluate, and apply a new, spatially explicit, annual-scale, global model of lentic N removal called NiRReLa (Nitrogen Retention in Reservoirs and Lakes). The NiRReLa model incorporates small lakes and reservoirs than have been included in previous global analyses, and also allows for separate treatment and analysis of reservoirs and natural lakes. Model runs for the mid-1990s indicate that lentic systems are indeed important sinks for N and are conservatively estimated to remove 19.7 Tg N yr-1 from watersheds globally. Small lakes (< 50 km2) were critical in the analysis, retaining almost half (9.3 Tg N yr-1) of the global total. In model runs, capacity of lakes and reservoirs to remove watershed N varied substantially (0-100%) both as a function of climate and the density of lentic systems. Although reservoirs occupy just 6% of the global lentic surface area, we estimate they retain approximately 33% of the total N removed by lentic systems, due to a combination of higher drainage ratios (catchment surface area : lake or reservoir surface area), higher apparent settling velocities for N, and greater N loading rates in reservoirs than in lakes. Finally, a sensitivity analysis of NiRReLa suggests that, on-average, N removal within lentic systems will respond more strongly to changes in land use and N loading than to changes in climate at the global scale.The NSF26 Research Coordination Network on denitrification for support for collaboration (award number DEB0443439 to S.P. Seitzinger and E.A. Davidson). This project was also supported by grants to J.A. Harrison from California Sea Grant (award number RSF8) and from the U.S. Geological Survey 104b program and R. Maranger (FQRNT Strategic Professor)

    Harnessing the NEON data revolution to advance open environmental science with a diverse and data-capable community

    Get PDF
    It is a critical time to reflect on the National Ecological Observatory Network (NEON) science to date as well as envision what research can be done right now with NEON (and other) data and what training is needed to enable a diverse user community. NEON became fully operational in May 2019 and has pivoted from planning and construction to operation and maintenance. In this overview, the history of and foundational thinking around NEON are discussed. A framework of open science is described with a discussion of how NEON can be situated as part of a larger data constellation—across existing networks and different suites of ecological measurements and sensors. Next, a synthesis of early NEON science, based on >100 existing publications, funded proposal efforts, and emergent science at the very first NEON Science Summit (hosted by Earth Lab at the University of Colorado Boulder in October 2019) is provided. Key questions that the ecology community will address with NEON data in the next 10 yr are outlined, from understanding drivers of biodiversity across spatial and temporal scales to defining complex feedback mechanisms in human–environmental systems. Last, the essential elements needed to engage and support a diverse and inclusive NEON user community are highlighted: training resources and tools that are openly available, funding for broad community engagement initiatives, and a mechanism to share and advertise those opportunities. NEON users require both the skills to work with NEON data and the ecological or environmental science domain knowledge to understand and interpret them. This paper synthesizes early directions in the community’s use of NEON data, and opportunities for the next 10 yr of NEON operations in emergent science themes, open science best practices, education and training, and community building

    Adsorption of the nitrification inhibitors nitrapyrin and dicyandiamide by soil humic substances

    No full text
    Adsorption of the nitrification inhibitors dicyandiamide (DCD) and nitrapyrin (2-chloro-6(trichloromethyl)-pyridine) on humic acid (HA) and fulvic acid (FA) extracted from five Indiana soils was studied. Ten mg of HA or FA were suspended in aqueous solutions (10 ml) of either DCD (5,10, 20, 40 and 80 ug ml-1) or nitrapyrin (2,4,6,8,12 ug ml-1). The amount of nitrification inhibitor absorbed was evaluated after shaking the suspension of DCD for 48 h or nitrapyrin for 24 h. Infrared spectra of the nitrification inhibitor-humic material complexes were recorded. The results indicated that FA adsorbed more DCD than HA, and HA was a better adsorbent for nitrapyrin. Correlation between Freundlich K values and organic carbon content of HA and FA was not statistically significant, indicating a slight contribution of hydrophobic forces in the adsorption of DCD and nitrapyrin. The infrared spectra provided evidence that adsorption occurred predominantly through an ionic bonding mechanism involving the protonated amino group of DCD or the nitrogen of the pyridine ring of nitrapyrin and the negative functional groups of the humic materials.Thesis (M.S.)Department of Natural Resource
    corecore