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Abstract 21 

Optimizing agricultural management practices is imperative for ensuring food security and 22 

building climate-resilient agriculture. The past several decades have witnessed the emergence of 23 

conservation tillage practices to combat soil erosion and degradation. However, the effects of 24 

conservation tillage on crop water productivity (CWP) remain uncertain, especially from a 25 

regional-scale perspective. Here, we used an improved process-based agroecosystem model 26 

(DLEM-Ag) to quantify the long-term effects of conservation tillage (e.g., no-tillage, NT; 27 

reduced tillage, RT) on CWP (defined as the ratio of crop productivity to evapotranspiration) of 28 

corn and soybean across the Ohio River Basin during 1979-2018. Our results revealed an 29 

average increase of 2.8% and 8.4% in CWP for corn and soybean, respectively, under the NT 30 

adoption scenario. Compared to the conventional tillage scenario, NT and RT would enhance 31 

CWP, primarily due to reductions in evapotranspiration, particularly evaporation. Further 32 

analysis suggested that, although NT and RT may decrease surface runoff, these practices could 33 

also increase subsurface drainage and nutrient loss from corn and soybean farmland via leaching. 34 

These results indicate that conservation tillage should be complemented with additional water 35 

and nutrient management practices to enhance soil water retention and optimize nutrient use in 36 

the region's cropland. Our findings also provide unique insights into optimizing management 37 

practices for other areas where conservation tillage is widely applied. 38 

Keywords: Conservation tillage, Crop water productivity (CWP), No-tillage, Ohio River Basin 39 

(ORB), Process-based agroecosystem model 40 
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Abbreviations 41 

CWP  crop water productivity 42 

CT  conventional tillage 43 

ET  evapotranspiration 44 

GPP  gross primary productivity 45 

NT  no-tillage 46 

RT  reduced tillage 47 

ORB  Ohio River Basin 48 

1. Introduction 49 

Water deficits and surpluses represent the greatest challenge facing rain-fed agriculture 50 

worldwide (Shekhar and Shapiro, 2019). Increasing drought and extreme rainfall events have 51 

already caused significant impacts on water resources and food security globally (Daryanto et al., 52 

2017a; Drum et al., 2017; Li et al., 2019). Adaptation of management practices is critical to 53 

improve water resource use efficiency and build climate-resilient agricultural systems (Tian et al., 54 

2018). In that regard, conservation tillage has emerged as a promising option that can help 55 

conserve soil moisture and reduce soil erosion, thus alleviating the impact of rainfall deficit on 56 

crop yields (Busari et al., 2015; Holland, 2004; Phillips et al., 1980). However, its effects on 57 

regional crop water productivity (CWP, defined as the ratio of crop carbon gain to water 58 

consumption, Van Halsema and Vincent, 2012) have not yet been fully investigated.   59 

Conservation tillage refers to any tillage system with a seedbed preparation technique in 60 

which at least 30% of the soil surface is covered by crop residues (Lal et al., 2017), including no-61 

tillage (NT), reduced tillage (RT), mulch tillage, and ridge tillage. Compared to conventional 62 

tillage (CT), conservation tillage decreases soil disturbance and leaves more crop residues on the 63 

soil surface. Some studies have reported the positive effects of conservation tillage on CWP 64 
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across different agroecosystems (Cantero-Martínez et al., 2007; Jabro et al., 2014; Li et al., 2018; 65 

Su et al., 2007; Tang et al., 2015). However, other studies have found no effect of conservation 66 

tillage on CWP or even lower CWP than CT (Guan et al., 2015; Irmak et al., 2019; Liu et al., 67 

2013). With the recognition that the effects of conservation tillage on CWP involve alteration of 68 

soil properties and soil water dynamics in the rhizosphere (O'Brien and Daigh, 2019), these 69 

variable results likely reflect not only the direct effect of a tillage practice but also its interactions 70 

with climate, soil type, land management history, and cropping systems (Strudley et al., 2008). 71 

Failure to account for these differences could lead to uncertainties in regional assessments of the 72 

effectiveness of conservation tillage. 73 

Previous studies examining linkages between conservation tillage and CWP have largely 74 

in arid/semi-arid regions (Jalal et al., 2014; Yang et al., 2018; Irmak et al., 2019). Less attention 75 

has been paid to how conservation tillage affects crop water use in humid areas. These areas face 76 

more synergistic effects of water and nutrient supply and are more vulnerable to changes in 77 

rainfall (Wuebbles et al., 2017). Although several studies have used remote sensing products 78 

(e.g., MODIS GPP and ET) to quantify large-scale variation in CWP (Ai et al., 2020; Lu and 79 

Zhuang; 2010), they usually generated results for all croplands but did not provide crop-specific 80 

CWP estimates. Moreover, regional and global CWP simulations have generally ignored tillage 81 

effects, in part because of the under-representation of tillage processes in global ecosystem 82 

models (Tian et al., 2015; Lutz et al., 2019). It is essential to adopt an integrated approach that 83 

links process-based agricultural models with ground and satellite observation data to advance 84 

predictive understanding of tillage effects on reginal CWP.  85 

Located in the Eastern Corn Belt (Fig. 1), the Ohio River Basin (ORB) is a highly 86 

agricultural watershed with almost 98% of its croplands supporting corn and soybean production 87 
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(according to the 2018 National Cropland Data Layer). The agricultural landscape in the ORB is 88 

susceptible to soil erosion due to heavy rains (Drum et al., 2017). Conservation tillage has been 89 

promoted as a tool to address soil erosion in this region. Introduced to the ORB region in the 90 

1960s and encouraged by agricultural extension agencies, conservation tillage has steadily grown 91 

in adoption during the past several decades (Franklin and Bergtold, 2020). More than 60% of 92 

corn and almost 80% of soybean in the ORB are grown under different forms of conservation 93 

tillage (CTIC, 2018). The spread of conservation tillage systems in the ORB justifies the need to 94 

assess its impact on water use for the dominant crops in the region. Long-term and spatially 95 

explicit information on tillage practice effects is urgently needed to address questions of water 96 

resource optimization and predicting food production and shortages in the context of climate 97 

change. Therefore, the ORB provides an ideal context for a regional examination of these 98 

questions using our proposed integrated approach. 99 

Here we used a process-based agroecosystem model (DLEM-Ag) to quantify the 100 

magnitude and spatiotemporal patterns of CWP across the ORB corn-soybean cropping system 101 

for the period 1979-2018. We noticed that CWP has a long tradition among crop physiologists 102 

that continue to call water use efficiency (WUE) (e.g., Bluemling et al., 2007; Perry, 2007). 103 

WUE is defined as WUE = [product]/ [water applied/water available], representing an efficiency 104 

parameter of water utilization at the farm/plot level, which is scale- and context-dependent (Van 105 

Halsema and Vincent, 2012). We defined the CWP as the ratio of GPP and ET to investigate 106 

coupled carbon assimilation and water consumption from an ecosystem perspective. Our specific 107 

objectives were to 1) investigate the magnitude and long-term trends in CWP for corn and 108 

soybean in the ORB, 2) quantify changes in CWP as affected by different tillage practices, and 3) 109 

explore relationships between carbon and water fluxes in different tillage systems.  110 
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<Insert Figure 1> 111 

2. Materials and Methods 112 

2.1 Description of the Study Area 113 

The ORB covers 421,966 km2 within 11 states. The Ohio River starts at the Allegheny and the 114 

Monongahela's confluence in Pittsburgh, Pennsylvania, and ends in Cairo, Illinois, where it 115 

flows into the Mississippi River. The humid continental climate is prevalent in the upper half of 116 

the basin, and a humid subtropical climate is dominant in the lower half of the basin. Annual 117 

rainfall for different regions within the ORB ranges between 990 mm and 1473 mm. From 1979 118 

to 2018, basin-wide annual rainfall averaged 1175 mm, with a coefficient of variation of 0.12. 119 

Nearly half of the land area in the ORB is covered by forests, primarily secondary growth 120 

deciduous trees. Cultivated cropland (~ 30%) is dominant in the northern and western sections of 121 

the ORB, with corn and soybean being the major crops grown (Santhi et al., 2014). 122 

The northern portion of the ORB is near the glacial margin during the Late Pleistocene. The 123 

humid temperate climate and predominance of deciduous forests during the Holocene have led to 124 

the formation of Alfisols across most of the basin. In the eastern and southeastern portions of the 125 

basin, cropland soils are generally well-drained across various slope conditions (~57% well-126 

drained, Schilling et al., 2015). In contrast, croplands in the northern and northwestern portions 127 

of the basin are characterized by poorly drained conditions with slopes often < 5%. 128 
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2.2 Model description 129 

2.2.1 The DLEM-Ag 130 

The agricultural module of the Dynamic Land Ecosystem Model (DLEM-Ag) is a highly 131 

integrated process-based agroecosystem model. The DLEM-Ag is capable of simulating the daily 132 

crop growth and exchanges of trace gases (CO2, CH4, and N2O) between agroecosystems and the 133 

atmosphere; and quantifying fluxes and storage of carbon, water, and nitrogen within 134 

agroecosystems as affected by multiple factors such as climate, atmospheric CO2, nitrogen 135 

deposition, tropospheric ozone, land use and land cover change, and agriculture management 136 

practices (e.g., harvest, rotation, irrigation, and fertilizer use). The model has been extensively 137 

used to study crop production, soil organic carbon, and greenhouse gas emissions in 138 

agroecosystems at regional and global scales. The detailed structure and processes of the model 139 

have been well documented in previous work (e.g., Ren et al., 2011; Ren et al., 2012; Ren et al., 140 

2016; Ren et al., 2020; Tian et al., 2010; Tian et al., 2015; Zhang et al., 2018). 141 

2.2.2 Model representation of tillage effects  142 

We have recently incorporated a tillage sub-module in the DLEM-Ag model (Huang et al., 2020). 143 

The implementation of tillage mainly focuses on two processes that are directly affected by 144 

tillage: 1) the redistribution of surface residues with tillage practice and subsequent effects on 145 

soil water dynamics and water-related processes; 2) the increase in decomposition rates. The 146 

tillage effects are implemented in combination with residue management, as these management 147 

practices are often interrelated (Strudley et al., 2008). Tillage incorporates surface residues into 148 

the soil, altering the coverage of residues on top of the soil. Crop residues left on soil surface 149 

intercept rainfall, facilitating water infiltration. Surface residues also serve as a barrier that 150 



8 

 

lowers soil evaporation and reduces water losses to the atmosphere. Therefore, crop residues 151 

help maintain or improve soil moisture. Soil moisture affects primary production by regulating 152 

the amount of available water for plants, and in turn, plant water uptake also changes soil 153 

moisture. The tillage sub-module does not consider the direct effect of tillage on soil thermal 154 

properties due to the scarcity of studies on soil thermal properties under different tillage regimes 155 

(Blanco-Canqui and Ruis., 2018; O'Brien and Daigh, 2019). However, as soil thermal properties 156 

are intimately associated with soil hydraulic properties in the DLEM-Ag, the tillage sub-module 157 

indirectly affects soil temperature by changing soil water content.  158 

2.3 Input data 159 

2.3.1 Climate, CO2, and Nitrogen deposition  160 

The daily climate data used to drive the model were derived from the gridMET dataset at a 161 

resolution of 4 km × 4 km covering the United States from 1979-2018 (Abatzoglou, 2013), 162 

including maximum, minimum, and average temperature; precipitation; shortwave radiation; 163 

wind; and relative humidity. The historical atmospheric CO2 concentration dataset was obtained 164 

from the Earth System Research Laboratory of NOAA (National Oceanic and Atmospheric 165 

Administration, https://www.esrl.noaa.gov/gmd/). Gridded nitrogen deposition maps were 166 

extracted from the North American Climate Integration and Diagnostics – Nitrogen Deposition 167 

Version 1 (NACID-NDEP1) dataset (Hember, 2018).  168 

2.3.2 Crop rotation and crop phenology  169 

The crop rotation maps were generated by using the USDA-NASS Cropland Data Layer (CDL) 170 

datasets. Following a similar approach by Panagopoulos et al. (2015) and Srinivasan et al. (2010), 171 

we overlaid multi-year CDL information to produce crop rotation maps. This process resulted in 172 
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dominant corn-soybean or soybean-corn rotations for the cropland portion of the region. The 173 

2018 CDL data showed that approximately 98% of croplands in the ORB were planted with corn 174 

and soybean. Based on a three-year rotation pattern in the ORB from 2015 to 2017, we derived 175 

eight cropland rotation types involving corn and soybean: 1) corn/soybean, 2) 176 

corn/soybean/soybean, 3) corn/corn/soybean, 4) soybean/corn, 5) soybean/corn/corn, 6) 177 

soybean/soybean/corn, 7) continuous corn, and 8) continuous soybean. These eight rotation types 178 

constitute approximately 90% of all the three-year rotations that involve corn or soybean in the 179 

ORB (Table. S1). Therefore, minor rotation types such as corn/soybean/wheat and 180 

corn/corn/wheat were not included. We then aggregated the 30-m rotation information to 181 

produce fractional rotation types at a spatial resolution of 4-km (Fig. 1).   182 

The planting and harvesting dates for corn and soybean were derived using the 500-m crop 183 

phenology dataset from Yang et al. (2020) combined with the CDL datasets. Specifically, we: 1) 184 

calculated corn and soybean fractions in each 500-m grid cell; 2) overlaid the center of each 4-185 

km pixel on the 500-m phenology map to assign the index of the 500-m pixel to the nearest 4-km 186 

pixel; 3) searched within 10 km around the center on the 4-km map to find the pixels with more 187 

than 55% of corn or soybean (assuming that corn or soybean phenology information dominates 188 

pixels with more than 55% coverage); 4) assigned the planting/harvesting date of corn and 189 

soybean at the nearest pixel to the center of the 4-km pixel. For unassigned pixels, we replaced 190 

the value with the most adjacent pixels. Overall, the planting date in the ORB was 97-177 (day 191 

of the year) for both corn and soybean. The harvesting dates were 289-330 and 277-290 for corn 192 

and soybean, respectively.  193 
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2.3.3 Tillage and other agricultural management practices 194 

We obtained county-level ORB tillage information from the National Crop Residue Management 195 

Survey (CRM) compiled by the Conservation Technology Information Center 196 

(https://www.ctic.org/). The tabular data provides the acreages and percentages of five tillage 197 

types adopted in all crops, including corn and soybean. For simplification, we grouped the five 198 

major tillage types into three categories, i.e., no-tillage, reduced tillage (including ridge tillage, 199 

mulch tillage, and reduced tillage), and conventional tillage. We used county acreages combined 200 

with the CDL maps to estimate the spatial distribution of conventional and conservation tillage 201 

for corn and soybean, assuming each pixel within a county has the same rates of the tillage-202 

specific area. We reconstructed annual tillage maps from 1979-2018 based on the CRM dataset 203 

(1989-2011) and assumed that the tillage maps of other years are similar to the nearest year. 204 

Moreover, we also generated three tillage maps with all the corn/soybean under a specific tillage 205 

regime such as NT, RT, or CT for sensitivity analysis.  206 

Crop-specific nitrogen fertilizer use data were derived from the USDA Economic 207 

Research Service statistics on fertilizer use (https://www.ers.usda.gov/data-products/fertilizer-208 

use-and-price.aspx), covering 1960-2018. A 4-km irrigation map was reconstructed based on the 209 

MODIS irrigated agriculture dataset (2012) for the United States (MIrAD-US, Pervez and Brown, 210 

2010). 211 

2.4 Model evaluation 212 

The DLEM-Ag model has been extensively calibrated and validated against both site-level and 213 

regional-scale data (Ren et al., 2011, 2012, 2016, 2020; Tian et al., 2010; Zhang et al., 2018). 214 

Because we used driving forces different from previous regional studies and mainly focused on 215 
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corn and soybean systems, we specifically calibrated and validated the simulated crop GPP and 216 

ET against published results from cropland sites in the AmeriFlux Network 217 

(https://ameriflux.lbl.gov/) within and close to the ORB region. One site is an agricultural field 218 

on a corn-soybean rotation at the Fermi National Accelerator Laboratory-Batavia, Illinois (US-219 

IB1, 41.86°N, 88.22°W). The field has been farmed for more than 100 years, and the corn-220 

soybean rotation with conventional tillage was established in July 2005. Soil texture at this site is 221 

silt clay loam in the topsoil and clay from in the subsoil. The other site was established in 1996 at 222 

Bondville, Illinois (US-Bo1, 40.01°N, 88.29°W). The field is under continuous no-tillage with 223 

alternating years of corn and soybean crops.  Both sites have a typical humid continental climate 224 

with hot, humid summers and cool to cold winters, and they are representative of the northern 225 

central lowland. The model was calibrated using the first two-year data at each location and 226 

validated against the available data for the remaining years. Our evaluation results showed a 227 

general agreement between the simulated GPP and ET with measurements made at the flux 228 

towers (Fig. 2a, b).  229 

To evaluate the model performance at the regional level, we further compared simulated NPP 230 

with survey and remote sensing products (Fig. 2c and 2d). The temporal pattern of crop NPP at 231 

the basin level was evaluated against the historical crop NPP derived from crop yield records 232 

reported by the USDA and derived from the Moderate Resolution Imaging Spectroradiometer 233 

(MODIS) NPP product (MOD17A3). Specifically, the USDA crop yield records were converted 234 

to NPP following the method from Prince et al. (2001) and Li et al. (2014): 235 

��� = ����� × 
�� × 
��� × 
������ × (1 + ��)/�� 236 
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where yield is the crop yield in report unit by USDA inventory (bushel, pound, etc.), 
��is a 237 

factor to convert the raw yield data into a standard unit of biomass, 
��� is a factor to convert the 238 

mass to dry biomass, 
������ is a carbon content factor to convert the dry biomass to carbon (we 239 

use 450 g C/kg), HI is the harvested index, and RS is the root/shoot ratio. More details can be 240 

found in Li et al. (2014) and Ordóñez et al. (2020).  241 

We overlaid the MODIS NPP maps with the CDL land cover data to extract corn and soybean 242 

NPP from 2008 to 2017. The results showed that the simulated NPP was generally within the 243 

range of survey-based NPP but relatively higher for corn and lower for soybean than those 244 

estimated by MODIS. This discrepancy could be attributed partially to the light use efficiency 245 

parameterization in the MODIS algorithm, which uses one light use efficiency value to represent 246 

all crops (Turner et al., 2006; Bandaru et al., 2013). Our results are in agreement with previous 247 

studies that MODIS NPP products tend to overestimate at low productivity sites and 248 

underestimate at high productivity sites (Turner et al., 2005; Turner et al., 2006). 249 

<Insert Figure 2> 250 

2.5 Model experimental design 251 

We designed four simulation scenarios to assess the magnitude and spatiotemporal patterns of 252 

corn and soybean CWP (calculated as CWP = GPP/ET) during 1979-2018 and analyzed the 253 

difference associated with various tillage systems (Table 1). The model simulation began with an 254 

equilibrium run using 30-years (1979-2008) mean climate to develop the simulation boundary, in 255 

which the year-to-year variations of carbon, nitrogen, and water pools in each grid were less than 256 

0.1 g C/m2/yr, 0.1 mm H2O/yr, and 0.1 g N m2/yr, respectively. Before the transient run, the 257 

model was run for another 100 years for the spin-up to remove system fluctuations caused by the 258 
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shift from equilibrium to transient state, using climate data randomly selected from 1979-2008. 259 

The baseline simulation scenario (S1) was designed to produce CWP close to reality and its 260 

changes across the ORB. It was driven by historically varying tillage types and other input 261 

variables (e.g., climate, CO2, nitrogen deposition, fertilizer use, irrigation, and crop rotation).  262 

For simulation scenarios S2 - S4, we assumed that a specific tillage practice was applied for all 263 

the croplands across the basin over the study period. Comparing the four scenarios provides the 264 

potential CWP change of adopting conservation tillage in the corn and soybean systems.  265 

<Insert Table 1> 266 

3. Results 267 

3.1 Historical changes in air temperature and precipitation in the ORB 268 

The ORB has been getting warmer and wetter during 1979-2018, with substantial interannual 269 

variabilities in temperature and precipitation. The largest temperature increases occurred in the 270 

periphery of the ORB region, including western Kentucky, southern and eastern Indiana, and 271 

western Ohio (Fig. 3a). At the basin-level, air temperature has increased at a rate of 0.02 °C/year 272 

since 1979 (R2 = 0.16, p < 0.05; Fig. 3b). Relatively more precipitation increases occurred in the 273 

center of the ORB, along both sides of the middle Ohio River, especially in southeastern Indiana 274 

and northern/eastern Kentucky (Fig. 3c). The average precipitation increased at a rate of 3.9 275 

mm/year since 1979 (R2 = 0.10, p < 0.05; Fig. 3d). The ORB region is characterized by a wet 276 

spring and dry autumn, with increased precipitation intensity and frequency in spring. Two 277 

severe droughts (large increase in temperature and decrease in precipitation) occurred in 1987 278 

and 2012. Two abnormally wet periods (large increase in precipitation with small temperature 279 

change) were recorded in 1996 and 2018. 280 
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<Insert Figure 3> 281 

3.2 Tillage effects on GPP and ET over the ORB region 282 

In the ORB region, the mean annual GPP is 1264 ± 174 g C/m2/yr and 578 ± 150 g C/m2/yr for 283 

corn and soybean, respectively (Figs. 4a, b). The spatial distribution patterns of GPP for corn and 284 

soybean are similar to each other, with higher GPP in the northwest ORB region where 285 

agriculture is the dominant land use. Compared to the baseline simulation (S1), tillage scenarios 286 

(S2, S3, and S4) showed that the effect of tillage on GPP was negligible for both crops (Figs. 4c-287 

h). Nevertheless, NT and RT tended to have a slightly positive effect on GPP relative to CT. 288 

<Insert Figure 4> 289 

The spatial distribution patterns of annual ET for both crops showed an increasing trend from the 290 

northeast toward the southwest region of the ORB (Figs. 5a, b). The average annual ET was 654 291 

± 43 mm/yr for corn and 454 ± 34 mm/yr for soybean. The sensitivity scenarios showed that CT 292 

increased ET by 1.6 ± 0.8% in corn and 10.1 ± 3.3% in soybean (Figs. 5c, d; Table 2), while NT 293 

decreased ET by 2.6 ± 1.5% in corn and 7.4 ± 4.0% in soybean (Figs. 5g, h), compared to the 294 

baseline scenario (S1). Generally, the ET reduction under NT scenario was more pronounced in 295 

the northwest of the ORB, where the annual ET was relatively low. The effect of RT on ET 296 

relative to S1 was somewhat neutral (-0.2 ± 0.9% and 1.4 ± 2.9% for corn and soybean, 297 

respectively, Figs. 5e, f). 298 

<Insert Figure 5> 299 

<Insert Table 2> 300 
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3.3 Tillage effects on CWP over the ORB region  301 

The baseline simulation (S1) showed that the mean annual CWP was 1.93 ± 0.25 kg C/m3 and 302 

1.28 ± 0.36 kg C/m3 for corn and soybean, respectively, across the ORB region during 1979 - 303 

2018 (Figs. 6a, b). The spatial patterns for the annual CWP were similar for corn and soybean. 304 

Areas with higher CWP occurred in the northwest section of ORB and decreased southeastward. 305 

The sensitivity scenarios (S2, S3, and S4) revealed that the tillage-induced CWP change varied 306 

among different tillage scenarios. Compared to the baseline scenario (S1), CT decreased the 307 

mean annual CWP by 1.7 ± 0.8% for corn and 9.2 ± 2.7% for soybean (Figs. 6c, d; Table. 2), 308 

while NT increased CWP by 2.8 ± 1.6% and 8.4 ± 4.6% for corn and soybean, respectively (Figs. 309 

6g, h). The increase in CWP was more pronounced in the northern half of the ORB, where the 310 

annual ET was relatively lower.  However, the impact of RT on CWP was relatively neutral (0.1 311 

± 0.9% and -1.1 ± 2.7% for corn and soybean, respectively, Figs. 6e, f).  312 

<Insert Figure 6> 313 

The baseline temporal dynamics of the annual CWP showed a significant increasing trend 314 

for soybean (0.006 kg C/m3/yr, p < 0.01, Fig. 7b) and corn (0.004 kg C/m3/yr, p < 0.01, Fig.7a). 315 

Generally, throughout the simulation period, the NT scenario resulted in the highest annual CWP 316 

for both crops in the ORB region (1.98 ± 0.07 kg C/m3 and 1.37 ± 0.09 kg C/m3 for corn and 317 

soybean, respectively). In comparison, the CT scenario led to the lowest annual CWP (1.89 ± 318 

0.08 kg C/m3 and 1.13 ± 0.08 kg C/m3 for corn and soybean, respectively, Figs. 7a, b), despite 319 

the variations in the annual CWP. No significant difference in the annual CWP was observed 320 

between the RT and the baseline scenario.  321 

<Insert Figure 7> 322 
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4. Discussion 323 

4.1 Impacts of tillage management on crop GPP, ET, and CWP  324 

Our results showed that, on average, across the ORB region, different tillage regimes had 325 

indistinguishable effects on GPP for corn or soybean crops (Fig. 4). This is not surprising 326 

considering that the ORB is often "water-rich" (Fig. 3d, Adler et al., 2003) with plentiful rainfall 327 

as well as numerous major rivers and impoundments. Alterations in soil water dynamics caused 328 

by different tillage methods would probably not limit water available for crops in the basin. Soil 329 

and water conservation technologies do not necessarily lead to enhanced crop productivity 330 

(Hellin and Schrader, 2003). Previous studies have suggested that, in comparison to humid 331 

regions, dry areas where crop productivity is often limited by soil moisture could benefit more 332 

from NT adoption (Huang et al., 2018; Pittelkow et al., 2015). A site-level study in Eastern and 333 

Northern Ohio found, compared to CT, a slightly higher crop yield under conservation tillage at 334 

a well-drained site, but no significant difference between tillage at a poorly drained site, despite 335 

increased soil water retention under NT and RT (Kumar et al., 2012). Climate and soil may be 336 

major factors influencing crop productivity response to tillage (Toliver et al., 2012). In Southern 337 

Illinois, Kapusta et al. (1996) also observed no difference in corn yield among CT, NT, and RT 338 

on a silt loam soil after 20 years under each tillage treatment. Moreover, similar GPP for wheat 339 

between CT and NT systems was recently reported in the inland Pacific Northwest region with a 340 

Mediterranean climate (Chi et al., 2016) and in the Southern Great Plains with a humid 341 

subtropical climate (Kandel et al., 2020) using the eddy covariance method.  342 

With respect to ET, our results are consistent with the current understanding that 343 

conservation tillage decreases ET compared to CT (Fig. 5). NT and RT decreased ET by 2 ~ 4% 344 

and 9 ~ 18% relative to CT in corn and soybean systems, respectively. These greater reductions 345 
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in evaporative water loss under NT would translate into more significant improvements in CWP, 346 

the ratio of GPP to ET. The enhancement in CWP found under the NT and RT scenarios (Fig. 6) 347 

was mainly due to decreased ET and minor changes in GPP. It should be noted that a noticeable 348 

increase in CWP occurred in areas with relatively lower annual ET, and where there was a 349 

greater reduction in ET under NT and RT compared to the areas with relatively higher ET (Fig. 5, 350 

Table. 2). In addition, our results showed that NT and RT reduced evaporation compared to CT 351 

(Fig. S1). They did not alter transpiration (Fig. S2), corresponding to the negligible distinctions 352 

in GPP among different tillage scenarios. Surface residues create a physical barrier that reduces 353 

evaporation and increases infiltration (Irmak et al., 2019). As a form of conservation tillage, NT 354 

resulted in more crop residue coverage on the soil surface than CT and less evaporation. Besides, 355 

tillage typically increases surface roughness, reduces albedo (Cierniewski et al., 2015), and 356 

increases net absorption of solar radiation by the soil (Schwartz et al., 2010), hence fueling 357 

evaporation. However, the effects of different tillage types on surface albedo and evaporation are 358 

highly variable, depending on soil color, residues color, and residue incorporation. There is a 359 

lack of representation of the direct effects of tillage on soil thermal properties (e.g., albedo) in 360 

current modeling studies. Therefore, our results might underestimate or overestimate the 361 

decrease in evaporation due to conservation tillage.  362 

Soil water evaporation is generally not favorable for crop productivity, although 363 

evaporation does slightly cool the surface microenvironment (Klocke et al., 2009), altering the 364 

soil energy balance (O'Brien and Daigh, 2019). Thus, adopting conservation tillage can reduce 365 

water loss via evaporation and make the soil more productive by maintaining soil moisture. One 366 

concern regarding residue cover in conservation tillage systems is that it tends to retard seed 367 

germination in the early spring due to the slow rate of soil warming (Blanco-Canqui and Lal, 368 
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2009) and could subsequently lead to reductions in crop productivity. For example, long-term 369 

tillage studies in Illinois (Kapusta et al., 1996) and Indiana (Griffith et al., 1988) reported lower 370 

corn plant populations under NT and RT systems than CT. However, these studies also suggested 371 

that plant population differences among tillage systems did not translate into a yield deduction 372 

when nitrogen fertilizer was applied. Our results revealed that GPP was also not affected by the 373 

tillage regime at large spatial and temporal scales. 374 

The present study also showed that the difference in CWP between NT and CT scenarios 375 

was higher in soybean systems (~ 18%) than in corn systems (~ 5%, Fig. 6). In Minnesota, Tang 376 

et al. (2015) observed similar results using eddy covariance measurement and MODIS products. 377 

The greater response of soybean CWP could be due to its less water-efficient photosynthesis 378 

pathway than corn (C3 vs. C4, Dietzel et al., 2016). It is worth noting that the soybean crop has a 379 

much lower amount of residue than corn. Tillage after corn might lead to more residues and 380 

exacerbate evaporation more than that after soybean.  The increase in CWP in NT/RT soybean 381 

was observed in rotations that soybean was sown after both corn and soybean. Considering that 382 

most of the rotations were soybean after corn or/and corn after soybean (Table. S1), enhanced 383 

soil water content due to NT and RT would increase soybean CWP more than corn CWP. 384 

4.2 Role of tillage management in the carbon and water cycles under climate change 385 

Increasing CWP under climate change will largely rely on management practices to reduce soil 386 

water evaporation and shift water use to more transpiration (Hatfield and Dold, 2019). Soil 387 

preparation plays a critical role in ensuring crop productivity and CWP in response to climate 388 

change. Our results support the theory that conservation tillage can make agroecosystem less 389 

susceptible to adverse impacts of climate change by partitioning more water into infiltration to 390 

maintain soil moisture, thus potentially reducing crop water stress during drought conditions. 391 
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Besides, soils in the ORB are vulnerable to water erosion, particularly during heavy spring 392 

rainstorms on croplands under CT systems (Van Pelt et al., 2017). Compared to CT, NT and RT 393 

decreased surface runoff but increased subsurface drainage in the study region (Fig. 8). However, 394 

the sum of runoff and drainage did not vary among different tillage scenarios. This finding is 395 

consistent with Daryanto et al. (2017b). The shift in water fluxes (i.e., ET, runoff, and drainage) 396 

among tillage systems further suggested the advantages of NT and RT in enhancing soil water 397 

storage. Furthermore, it is generally perceived that NT and RT can reduce soil carbon loss 398 

compared to CT, which helps maintain or build up soil carbon storage and improve soil structure 399 

in the long run (Blanco-Canqui and Ruis, 2018). However, it should be noted that NT and RT 400 

also increase subsurface drainage and potentially lead to more nutrient leaching. Daryanto et al. 401 

(2017b) reported a greater loss of nitrate via leaching under NT than under CT despite similar 402 

nitrate concentration under both systems. Similar results were also observed for dissolvable 403 

phosphorus (Daryanto et al., 2017c). Considering the abundant rainfall amount in the ORB 404 

region and the increasing trend in rainfall noted in the last several decades, there is a high 405 

probability that nutrient leaching from croplands would be a growing concern in the region. 406 

Therefore NT systems should be complemented with other measures to mitigate leaching loss. 407 

For example, cover cropping and installation of water harvesting technologies (e.g., drainage 408 

ditches with runoff filters, riparian buffers) can help increase available water for crops and lower 409 

the risk of nutrient leaching (Daryanto et al., 2018; Liu et al., 2020).   410 

<Insert Figure 8> 411 

In addition, a recent study noted a declining trend in NT adoption across the US (including the 412 

ORB) corn and soybean croplands since 2008, but increased adoption of RT (from 2006 to 2016) 413 

and CT (from 2007 to 2016) (Yu et al., 2020). These trends can be ascribed to the release (2007 414 
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and 2016) of land previously enrolled in the Conservation Reserve Program (USDA, Farm 415 

Service Agency 2019). Reports of increased resistance of weeds to herbicides may also play a 416 

disincentivizing role in regard to NT adoption (Perry et al., 2016). Moreover, farmers tend to 417 

make decisions based on many factors such as crop rotations, policies, and weather conditions. 418 

Blanco-Canqui and Wortmann (2020) argued that occasionally tillage of cropland under NT 419 

could be a potential solution to inadequate weed control and other risks associated with 420 

continuous NT. However, more research is needed to identify options for optimizing the 421 

environmental and cost-saving benefits of NT. It is essential to point out that our simulations 422 

may represent the "best-case" NT vs "worst-case" CT scenarios, and therefore, the results should 423 

be interpreted with caution. There is an urgent need for more spatio-temporally explicit data to 424 

document agroecosystem-level water partitioning and further our ability to predict how tillage 425 

regimes can help mitigate climate change impacts on crop productivity.  426 

5. Conclusions 427 

Process-based agroecosystem models are powerful tools that quantify large-scale carbon-water 428 

interactions and explore associated underlying mechanisms under various tillage management 429 

scenarios. This study offers the first attempt to quantify tillage effects on regional-scale CWP for 430 

the two most important crops in the ORB. Model simulation results showed that if all the 431 

croplands in the ORB region were under NT, the corn and soybean CWP would increase by 1-4% 432 

and 4-13%, respectively. In contrast, adoption of CT practice would result in CWP decreases of 433 

~2% and ~9%, respectively. Our results indicate that conservation tillage can be a viable 434 

approach to enhance CWP in corn and soybean cropping systems across the ORB. This benefit is 435 

mainly due to lower water loss through non-beneficial evaporation under conservation tillage 436 

systems. However, additional management practices and strategies are needed to decrease 437 
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nitrogen loss via leaching from croplands under NT. Future research should investigate the 438 

synergic effects of these complementary measures and their potential to optimize the 439 

environmental benefits of conservation tillage. 440 
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Table 1. Simulation design in this study. 674 

  Drivers used 

Scenarios Abbr Tillage Othersa 

Historical varying tillage S1 1979 - 2018 Varying 

Conventional tillage  S2 1979b Varying 

Reduced tillage S3 1979c Varying 

No-tillage S4 1979d Varying 

Note: a Others include climate data (e.g., air temperature, precipitation, and radiation from 1979 675 

to 2018), agricultural nitrogen fertilizer (i.e., nitrogen fertilizer from 1979 to 2018), and 676 

atmospheric conditions (i.e., CO2 and N deposition from 1979 to 2018); b Tillage intensity across 677 

the ORB for the entire period was consistent as conventional tillage (CT); c Tillage intensity 678 

across the ORB for the entire period was consistent as reduced tillage (RT); d Tillage intensity 679 

across the ORB for the entire period was consistent as no-tillage (NT). 680 

 681 

  682 
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Table 2. Regional summary of the percentage change from the simulation scenario S1 (GPP, ET, and CWP) owing to CT, RT, and NT. 683 

 Region Corn Soybean 

  CT RT NT CT RT NT 

ΔGPP 

(%) 

NCL* -0.04±0.02 0.01±0.02 0.08±0.03 -0.03±1.45 0.06±0.12 0.03±0.18 

SILP -0.03±0.15 -0.01±0.04 0.02±0.08 0.42±1.08 0.54±1.08 0.62±1.10 

AP -0.05±0.06 0.01±0.05 0.08 ± 0.08 -0.08±0.48 0.11±0.47 0.23±0.48 

ORB -0.05±0.09 0.00±0.04 0.06±0.07 0.10±0.72 0.23±0.71 0.27±0.74 

ΔET 

(%) 

NCL 1.39±0.50 -0.37±0.5 -2.83±0.70 11.28±2.47 1.27±1.49 -8.13±1.82 

SILP 1.59±0.49 0.39±0.37 -1.38±0.56 9.00±3.33 3.04±2.52 -3.91±2.63 

AP 2.04±1.17 -0.46±1.32 -3.71±1.86 9.67±3.82 -1.12±3.72 -11.44±4.42 

ORB 1.63±0.80 -0.17±0.88 -2.64±1.45 10.15±3.27 1.35±2.89 -7.40±3.98 

ΔCWP 

(%) 

NCL -1.43±0.50 0.37±0.52 3.00±076 -10.29±2.04 -1.26±1.47 8.90±2.08 

SILP -1.63±0.51 -0.42±0.38 1.43 ± 0.61 -7.96±2.56 -2.43±1.91 4.82±2.35 

AP -2.08±1.15 0.47±1.38 3.96 ± 2.11 -9.01±3.19 1.30±3.95 13.31±5.83 

ORB -1.68±0.79 0.14±0.93 2.77±1.62 -9.22±2.71 -1.14±2.72 8.38±4.55 
* NCL: Northern Central Lowland; SILP: Southern Interior Low Plateaus; AP: Applachia Plateaus; ORB: whole Ohio River Basin.   684 
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 685 

 686 

Figure 1. Location of the Ohio River Basin and percentage of cropland are for the eight rotation 687 

types at a spatial resolution of 4-km. Subregions are based on the physiographic divisions of the 688 

conterminous US. 689 
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Figure 2. Comparison of model estimated and observed gross primary productivity (GPP; a) and 692 

evapotranspiration (ET; b) for corn and soybean at sites US-BO1 (1997-2006) and US-IB1 693 

(2006-2017) (dashed line is the regression of observed data and modeled results. The solid line is 694 

the 1:1 line). Comparisons of basin-level annual NPP derived from USDA survey, MODIS NPP 695 

datasets, and model simulations for corn (c) and soybean (d). Error bars represent the upper and 696 

lower limits of yield-derived NPP based on the parameter ranges.  697 
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 698 

Figure 3. Spatial and temporal change of annual (a, b) air temperature, (c, d) precipitation 699 

between 1979 and 2018. Contour lines in a and b represent isotherm and isohyet, respectively.  700 
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Figure 4. Spatial distribution of the mean annual (1979 - 2018) gross primary productivity (GPP) 703 

in the ORB region from simulation scenario S1 (a, b), and the percentage change from the 704 

simulation scenario S1 GPP owing to CT (c, d), RT (e, h), and NT (g, h). The left panel is for 705 

corn, and the right panel is for soybean. 706 
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Figure 5. Spatial distribution of the mean annual (1979 - 2018) evapotranspiration (ET) in the 709 

ORB region from simulation scenario S1 (a, b), and the percentage change from the simulation 710 

scenario S1 ET owing to CT (c, d), RT (e, h), and NT (g, h). The left panel is for corn, and the 711 

right panel is for soybean. 712 
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Figure 6. Spatial distribution of the mean annual (1979 - 2018) crop water productivity (CWP) in 716 

the ORB region from simulation scenario S1 (a, b), and the percentage change from the 717 

simulation scenario S1  CWP owing to CT (c, d), RT (e, h), and NT (g, h). The left panel is for 718 

corn , and the right panel is for soybean. 719 
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Figure 7. Temporal changes in crop water productivity (CWP) under different simulation 722 

scenarios for corn (a) and soybean (b) over the ORB region. S1, S2, S3, and S4 are different 723 

simulation scenarios as shown in Table 1. 724 

 725 

Figure 8. Temporal changes in surface runoff (a, b) and subsurface drainage (c, d) under different 726 

simulation scenarios for corn (left panel) and soybean (right panel) over the ORB region. S1, S2, 727 

S3, and S4 are different simulation scenarios as shown in Table 1. 728 
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