16 research outputs found

    Dissociable Roles of Cerebral mu-Opioid and Type 2 Dopamine Receptors in Vicarious Pain: A Combined PET-fMRI Study

    Get PDF
    Neuroimaging studies have shown that seeing others in pain activates brain regions that are involved in first-hand pain, suggesting that shared neuromolecular pathways support processing of first-hand and vicarious pain. We tested whether the dopamine and opioid neurotransmitter systems involved in nociceptive processing also contribute to vicarious pain experience. We used in vivo positron emission tomography to quantify type 2 dopamine and mu-opioid receptor (D2R and MOR, respectively) availabilities in brains of 35 subjects. During functional magnetic resonance imaging, the subjects watched short movie clips depicting persons in painful and painless situations. Painful scenes activated pain-responsive brain regions including anterior insulae, thalamus and secondary somatosensory cortices, as well as posterior superior temporal sulci. MOR availability correlated negatively with the haemodynamic responses during painful scenes in anterior and posterior insulae, thalamus, secondary and primary somatosensory cortices, primary motor cortex, and superior temporal sulci. MOR availability correlated positively with orbitofrontal haemodynamic responses during painful scenes. D2R availability was not correlated with the haemodynamic responses in any brain region. These results suggest that the opioid system contributes to neural processing of vicarious pain, and that interindividual differences in opioidergic system could explain why some individuals react more strongly than others to seeing pain

    Tune Deafness: Processing Melodic Errors Outside of Conscious Awareness as Reflected by Components of the Auditory ERP

    Get PDF
    Tune deafness (TD) is a central auditory processing disorder characterized by the inability to discriminate pitch, reproduce melodies or to recognize deviations in melodic structure, in spite of normal hearing. The cause of the disorder is unknown. To identify a pathophysiological marker, we ascertained a group of severely affected TD patients using the Distorted Tunes Test, an ecologically valid task with a longstanding history, and used electrophysiological methods to characterize the brain's responses to correct and incorrect melodic sequences. As expected, we identified a neural correlate of patients' unawareness of melodic distortions: deviant notes modulated long-latency auditory evoked potentials and elicited a mismatch negativity in controls but not in affected subjects. However a robust P300 was elicited by deviant notes, suggesting that, as in blindsight, TD subjects process stimuli that they cannot consciously perceive. Given the high heritability of TD, these patients may make it possible to use genetic methods to study cellular and molecular mechanisms underlying conscious awareness

    Working memory dynamics and spontaneous activity in a flip-flop oscillations network model with a Milnor attractor

    Get PDF
    Many cognitive tasks require the ability to maintain and manipulate simultaneously several chunks of information. Numerous neurobiological observations have reported that this ability, known as the working memory, is associated with both a slow oscillation (leading to the up and down states) and the presence of the theta rhythm. Furthermore, during resting state, the spontaneous activity of the cortex exhibits exquisite spatiotemporal patterns sharing similar features with the ones observed during specific memory tasks. Here to enlighten neural implication of working memory under these complicated dynamics, we propose a phenomenological network model with biologically plausible neural dynamics and recurrent connections. Each unit embeds an internal oscillation at the theta rhythm which can be triggered during up-state of the membrane potential. As a result, the resting state of a single unit is no longer a classical fixed point attractor but rather the Milnor attractor, and multiple oscillations appear in the dynamics of a coupled system. In conclusion, the interplay between the up and down states and theta rhythm endows high potential in working memory operation associated with complexity in spontaneous activities

    Short and Intense Tailor-Made Notched Music Training against Tinnitus: The Tinnitus Frequency Matters

    Get PDF
    Tinnitus is one of the most common diseases in industrialized countries. Here, we developed and evaluated a short-term (5 subsequent days) and intensive (6 hours/day) tailor-made notched music training (TMNMT) for patients suffering from chronic, tonal tinnitus. We evaluated (i) the TMNMT efficacy in terms of behavioral and magnetoencephalographic outcome measures for two matched patient groups with either low (≀8 kHz, Nβ€Š=β€Š10) or high (>8 kHz, Nβ€Š=β€Š10) tinnitus frequencies, and the (ii) persistency of the TMNMT effects over the course of a four weeks post-training phase. The results indicated that the short-term intensive TMNMT took effect in patients with tinnitus frequencies ≀8 kHz: subjective tinnitus loudness, tinnitus-related distress, and tinnitus-related auditory cortex evoked activity were significantly reduced after TMNMT completion. However, in the patients with tinnitus frequencies >8 kHz, significant changes were not observed. Interpreted in their entirety, the results also indicated that the induced changes in auditory cortex evoked neuronal activity and tinnitus loudness were not persistent, encouraging the application of the TMNMT as a longer-term training. The findings are essential in guiding the intended transfer of this neuro-scientific treatment approach into routine clinical practice

    Repetition Enhancement for Frequency-Modulated but Not Unmodulated Sounds: A Human MEG Study

    Get PDF
    BACKGROUND: Decoding of frequency-modulated (FM) sounds is essential for phoneme identification. This study investigates selectivity to FM direction in the human auditory system. METHODOLOGY/PRINCIPAL FINDINGS: Magnetoencephalography was recorded in 10 adults during a two-tone adaptation paradigm with a 200-ms interstimulus-interval. Stimuli were pairs of either same or different frequency modulation direction. To control that FM repetition effects cannot be accounted for by their on- and offset properties, we additionally assessed responses to pairs of unmodulated tones with either same or different frequency composition. For the FM sweeps, N1m event-related magnetic field components were found at 103 and 130 ms after onset of the first (S1) and second stimulus (S2), respectively. This was followed by a sustained component starting at about 200 ms after S2. The sustained response was significantly stronger for stimulation with the same compared to different FM direction. This effect was not observed for the non-modulated control stimuli. CONCLUSIONS/SIGNIFICANCE: Low-level processing of FM sounds was characterized by repetition enhancement to stimulus pairs with same versus different FM directions. This effect was FM-specific; it did not occur for unmodulated tones. The present findings may reflect specific interactions between frequency separation and temporal distance in the processing of consecutive FM sweeps

    Dynamic causal modelling for EEG and MEG

    Get PDF
    Dynamic Causal Modelling (DCM) is an approach first introduced for the analysis of functional magnetic resonance imaging (fMRI) to quantify effective connectivity between brain areas. Recently, this framework has been extended and established in the magneto/encephalography (M/EEG) domain. DCM for M/EEG entails the inversion a full spatiotemporal model of evoked responses, over multiple conditions. This model rests on a biophysical and neurobiological generative model for electrophysiological data. A generative model is a prescription of how data are generated. The inversion of a DCM provides conditional densities on the model parameters and, indeed on the model itself. These densities enable one to answer key questions about the underlying system. A DCM comprises two parts; one part describes the dynamics within and among neuronal sources, and the second describes how source dynamics generate data in the sensors, using the lead-field. The parameters of this spatiotemporal model are estimated using a single (iterative) Bayesian procedure. In this paper, we will motivate and describe the current DCM framework. Two examples show how the approach can be applied to M/EEG experiments

    Thalamic Activation Modulates the Responses of Neurons in Rat Primary Auditory Cortex: An In Vivo Intracellular Recording Study

    Get PDF
    Auditory cortical plasticity can be induced through various approaches. The medial geniculate body (MGB) of the auditory thalamus gates the ascending auditory inputs to the cortex. The thalamocortical system has been proposed to play a critical role in the responses of the auditory cortex (AC). In the present study, we investigated the cellular mechanism of the cortical activity, adopting an in vivo intracellular recording technique, recording from the primary auditory cortex (AI) while presenting an acoustic stimulus to the rat and electrically stimulating its MGB. We found that low-frequency stimuli enhanced the amplitudes of sound-evoked excitatory postsynaptic potentials (EPSPs) in AI neurons, whereas high-frequency stimuli depressed these auditory responses. The degree of this modulation depended on the intensities of the train stimuli as well as the intervals between the electrical stimulations and their paired sound stimulations. These findings may have implications regarding the basic mechanisms of MGB activation of auditory cortical plasticity and cortical signal processing

    Brain hemodynamic activity during viewing and re-viewing of comedy movies explained by experienced humor

    Get PDF
    Humor is crucial in human social interactions. To study the underlying neural processes, three comedy clips were shown twice to 20 volunteers during functional magnetic resonance imaging (fMRI). Inter-subject similarities in humor ratings, obtained immediately after fMRI, explained inter-subject correlation of hemodynamic activity in right frontal pole and in a number of other brain regions. General linear model analysis also indicated activity in right frontal pole, as well as in additional cortical areas and subcortically in striatum, explained by humorousness. The association of the right frontal pole with experienced humorousness is a novel finding, which might be related to humor unfolding over longer time scales in the movie clips. Specifically, frontal pole has been shown to exhibit longer temporal receptive windows than, e.g., sensory areas, which might have enabled processing of humor in the clips based on holding information and reinterpreting that in light of new information several (even tens of) seconds later. As another novel finding, medial and lateral prefrontal areas, frontal pole, posterior-inferior temporal areas, posterior parietal areas, posterior cingulate, striatal structures and amygdala showed reduced activity upon re-viewing of the clips, suggesting involvement in processing of humor related to novelty of the comedic events.publishedVersionPeer reviewe

    Outlier responses reflect sensitivity to statistical structure in the human brain

    Get PDF
    We constantly look for patterns in the environment that allow us to learn its key regularities. These regularities are fundamental in enabling us to make predictions about what is likely to happen next. The physiological study of regularity extraction has focused primarily on repetitive sequence-based rules within the sensory environment, or on stimulus-outcome associations in the context of reward-based decision-making. Here we ask whether we implicitly encode non-sequential stochastic regularities, and detect violations therein. We addressed this question using a novel experimental design and both behavioural and magnetoencephalographic (MEG) metrics associated with responses to pure-tone sounds with frequencies sampled from a Gaussian distribution. We observed that sounds in the tail of the distribution evoked a larger response than those that fell at the centre. This response resembled the mismatch negativity (MMN) evoked by surprising or unlikely events in traditional oddball paradigms. Crucially, responses to physically identical outliers were greater when the distribution was narrower. These results show that humans implicitly keep track of the uncertainty induced by apparently random distributions of sensory events. Source reconstruction suggested that the statistical-context-sensitive responses arose in a temporo-parietal network, areas that have been associated with attention orientation to unexpected events. Our results demonstrate a very early neurophysiological marker of the brain's ability to implicitly encode complex statistical structure in the environment. We suggest that this sensitivity provides a computational basis for our ability to make perceptual inferences in noisy environments and to make decisions in an uncertain world
    corecore