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Abstract

We constantly look for patterns in the environment that allow us to learn its key regularities. These regularities are
fundamental in enabling us to make predictions about what is likely to happen next. The physiological study of regularity
extraction has focused primarily on repetitive sequence-based rules within the sensory environment, or on stimulus-
outcome associations in the context of reward-based decision-making. Here we ask whether we implicitly encode non-
sequential stochastic regularities, and detect violations therein. We addressed this question using a novel experimental
design and both behavioural and magnetoencephalographic (MEG) metrics associated with responses to pure-tone sounds
with frequencies sampled from a Gaussian distribution. We observed that sounds in the tail of the distribution evoked a
larger response than those that fell at the centre. This response resembled the mismatch negativity (MMN) evoked by
surprising or unlikely events in traditional oddball paradigms. Crucially, responses to physically identical outliers were
greater when the distribution was narrower. These results show that humans implicitly keep track of the uncertainty
induced by apparently random distributions of sensory events. Source reconstruction suggested that the statistical-context-
sensitive responses arose in a temporo-parietal network, areas that have been associated with attention orientation to
unexpected events. Our results demonstrate a very early neurophysiological marker of the brain’s ability to implicitly encode
complex statistical structure in the environment. We suggest that this sensitivity provides a computational basis for our
ability to make perceptual inferences in noisy environments and to make decisions in an uncertain world.
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Introduction

The survival of an organism often depends on its ability to form

expectations about the structure of its sensory environment, and to

monitor the environment for violations of these expectations so as

to respond to unexpected and potentially threatening events [1–5].

In many instances this goal is rendered challenging by the

unpredictability of even the normal environment [6].

Several studies have examined an ability that humans have to

implicitly learn regularities in observed stimuli [7]. In the auditory

domain many of these studies have used an oddball paradigm [8],

in which participants are presented with a sequence of events that

mostly obey a certain rule, but which is punctuated by occasional

‘‘oddballs’’ or events that violate that rule. These oddballs

frequently evoke conspicuous neurophysiological activity, reflected

in the so-called mismatch negativity (MMN) response. The MMN

can be observed in electro- and magneto-encephalographic

recordings (EEG and MEG) with a time latency of about 100 to

200 ms from violation onset [8]. In the classical, and simplest,

oddball paradigm, the main sequence comprises identical tonal

stimuli called ‘‘standards’’. The oddballs are events that differ from

the standards in some physical aspect such as frequency [9–12],

duration [13], or amplitude [14]. The MMN response is robustly

elicited in all these cases and represents a neurophysiological

marker both of the internalisation of the regularity, and of the

change detection.

Other experiments have observed MMN signals associated with

the violation of more sophisticated rules. Examples include: a tonal

sequence in which the higher the frequency of a tone, the louder its

amplitude, with violation by a high-frequency soft or low-frequency

loud tone [15]; a sequence of regularly descending tone pairs broken

by an occasional ascending combination [16]; or a regular rhythmic

pattern violated by an unexpectedly-timed event [17].

Despite the sophistication of these regularities, and the

occasional randomisation of any aspects of the standard stimuli

that are irrelevant to the rule [13], these studies predominantly

rely on establishing a deterministic, often sequence-based pattern

[18,19], against which oddballs may be judged. A few studies have

introduced some variability into the distribution of standards and

observed that MMN amplitude decreased when the range of

variability increased [20–22]. However, in these studies the

‘‘oddball’’ was still outside the distribution of standards, and the

standards were chosen from a small set of discrete known tones, to

which listeners had become accustomed. By contrast, we were
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interested in whether human listeners implicitly learn a statistical

regularity in a stream of unknown, continuously-distributed,

stochastic stimuli: a simple probabilistic pattern that could not be

encoded as a deterministic sequence-based rule, a finite set of

known standard stimuli, or by a categorical separation between

expected events and outliers. In our study, the definition of the

standards, or the context, is entirely probabilistic. As opposed to

situations [20,22] where oddballs were clearly outside the range of

standard variability, here both standards and oddballs are part of

the same distribution. Importantly, by its nature, such regularity

does not provide for a categorical separation between expected

events and outliers. Instead, as expectations are themselves

uncertain, oddball events must be defined quantitatively in terms

of how unlikely, or surprising they are given the probabilistic

expectations formed by the majority of stimuli. Thus, our

prediction was that a comparison between the neurophysiological

responses evoked by very likely events to those evoked by very

unlikely events should reveal an MMN-like deflection. Moreover,

the strength of this MMN should depend on the relative

likelihoods of the stimuli being compared. In particular, by

establishing two different statistical contexts, with two different

distributions of expected events, we could manipulate the

probability associated with the occurrence of the very same

physical stimulus in each of the two contexts.

Our key prediction here was that the stimulus should evoke a

larger prediction error, or MMN response, when embedded within

the context in which it was less likely. In effect, by investigating

human listeners’ sensitivity to statistical outliers embedded within a

distribution of random stimuli, we could determine both whether

listeners are able to implicitly learn and encode a statistical

pattern, and whether detection of outliers from this pattern evokes

an MMN signal similar to that evoked by violations of

deterministic sequences.

Results

Experiment 1: Behavioural evidence for statistical
sensitivity

Ten human participants reported changes in the luminance of a

fixation cross while ignoring a background sound made up of tone

pulses. The frequencies of most of the tone pulses in the

background sounds were drawn from either a narrow or a broad

distribution both of which were Gaussian in the log domain

(Figure 1). These distributions provided two different contexts for

the presentation of probe tones that were interspersed within the

random streams. The probe tone frequencies were either equal to

the centre frequency of the contextual distributions (500 Hz, likely

or ‘‘standard’’), or two octaves above it (2000 Hz, unlikely or

‘‘odd’’). In fact, in this first experiment each probe tone coincided

with a change in luminance in the fixation target, but participants

were not informed of this.

Nonetheless, we found that the reaction time to the luminance

change was shorter when it was accompanied by an odd probe

tone rather than a standard tone regardless of the context

(p = 0.002, ANOVA main effect, see Figure 2). This finding is

consistent with earlier observations that auditory outliers embed-

ded in simple deterministic patterns also facilitate visual target

detection [23]. We also found that reaction times were shorter

overall in the narrow as compared to the broad context (p = 0.004,

ANOVA main effect) and, crucially, that responses to luminance

changes paired with odd probe tones in the narrow context were

faster than those to changes paired with the same odd probe tones

in the broad context (p = 0.043, ANOVA interaction, p = 0.0076

post-hoc t-test).

Thus, these behavioural data show that listeners were indeed

sensitive to the contextual distribution and its associated proba-

bilities. Although the odd probes themselves were embedded at the

same rate in both contexts, when tones of similar frequency were

less likely to occur by chance within the background distribution,

then the associated facilitation of behavioural responses was

stronger.

Experiment 2: Neurophysiological evidence for statistical
regularity encoding

We next asked whether sensitivity to contextual statistical

properties had a neurophysiological fingerprint. To avoid possibly

confounding motor or attentional signals associated with the visual

task, we modified the experimental design to break the association

between probe sounds and visual events. Thus, in this variant of

the task, the visual and auditory streams were entirely unrelated.

Eighteen naı̈ve participants performed this modified task while we

recorded neural activity with MEG. As before, participants were

presented with probe sounds embedded in two contextual

frequency distributions characterised by equal means and different

variances, so that physically-identical odd probes were more

unlikely under the narrow (low variance) than under the broad

(high variance) distribution. These two distributions were present-

ed in two separate blocks and the block order was counter-

balanced across participants to avoid order effects (Figure 1).

Scalp analysis
We performed a full spatio-temporal statistical analysis,

searching for significant differences between the magnetic fields

evoked by odd and standard probe sounds (evoked response fields

or ERFs), treating these probes as analogous to the oddballs and

standard events respectively in a classical MMN paradigm. At the

scalp level, we found three left-lateralised clusters (family wise

error (FWE) corrected at p,0.05) peaking at about 160, 190, and

310 ms over temporal-parietal areas (Figure 3a). These corre-

sponded in latency and shape to the traditional MMN and P3a

components, as predicted. Thus, this finding suggests that in a

background of tones with randomly-distributed frequencies,

sounds whose frequencies lie distant from the mean are registered

physiologically as outliers and treated differently to tones whose

Author Summary

Survival crucially depends on our ability to extract
information from the environment. This ability relies on
learning about regularities that enable us to make
predictions about what is likely to happen next. Sensitivity
to violations of these regularities is necessary for timely
reactions and adaptive responses to unexpected, or odd,
events. Prior work on speech acquisition and artificial
grammar learning has provided important behavioural
evidence that humans are able to learn statistical
regularities, but it still falls considerably short of providing
a biological understanding for how these processes might
take place in the brain. The neurophysiological study of
regularity extraction has so far been limited, to either
sequence-based rules or to simple change-detection
paradigms, and thus the neurobiological mechanisms that
underpin statistical learning remain unknown. Here we
provide both behavioural and neurophysiological evi-
dence to show that humans keep track of the uncertainty
in apparently random distributions of events. Our work
demonstrates that an early neurophysiological signal
underlies the fundamental human ability of learning and
making inferences in an uncertain world.

Statistical Learning and Outlier Detection

PLOS Computational Biology | www.ploscompbiol.org 2 March 2013 | Volume 9 | Issue 3 | e1002999



frequencies fall at the centres of the distributions. However,

although the timing, form and localisation of this response are all

reminiscent of such a statistically-driven MMN effect, we could not

rule out a contribution due to the differing tone frequencies of the

odd and standard probes.

Thus, the crucial test was our second prediction: that the size

of the outlier response (odd probe response minus standard probe

response) would be greater in the context of the narrow (relative

to the broad) distribution. This is exactly what we found: an

MMN-like response peaking at about 120 ms over bilateral

temporal-parietal areas, which was stronger (more negative) in

the context of the narrow distribution (Figure 3b). Here, the

comparison is between responses evoked by physically identical

sounds; the only difference lies in the context, with the frequency

of the odd probe tone being much less likely to occur under the

narrow distribution. This difference in the magnitude of the

MMN-like response was mediated by context-dependent changes

in the amplitude of both the responses to odd and to standard

probes; responses to standard probes were smaller and those to

odd probes were larger when the same two sounds were played in

the narrow context (Figure S2).

Figure 2. Behavioural results. Displayed are responses to standard
and odd probe tones under the narrow (in blue) and broad (in red)
contexts. Reaction time was significantly shorter when it was
accompanied by an odd probe tone rather than a standard tone
regardless of the context (p = 0.002, ANOVA main effect), and more so
when luminance changes were paired with odd probe tones in the
narrow compared to the broad context (p = 0.043, ANOVA interaction,
p = 0.0076 post-hoc t-test).
doi:10.1371/journal.pcbi.1002999.g002

Figure 1. Experimental design. Tone pulse sequences were presented in blocks. The frequencies of the majority of tones in each block (grey) were
drawn from a contextual distribution that could be narrow (left) or broad (right). The distribution densities are shown in blue and red shading; both
were centred at 500 Hz and had standard deviations of 0.5 and 1.5 octaves respectively. Embedded in both sequences were probe tones whose
frequencies were either equal to the distribution centres (standard, black), or 2 octaves above (odd, blue and red). Yellow rectangles indicate
frequency exclusion windows used for the local adaptation analysis of Figure 5; the associated values of Na give the number of preceding tones that
fell outside the adaptation window. Block lengths are indicated for Experiment 2. Blocks in Experiment 1 were shorter and repeated more often. Inset:
The timing of tones and MEG epochs. Tone pulse waveforms (black) lasted 50 ms with ramped onsets and offsets. MEG responses (blue) were
extracted from 100 ms before to 350 ms after tone onset. The evoked response shown is the average response to odd probes in the narrow context,
spatially filtered as in Figure 5.
doi:10.1371/journal.pcbi.1002999.g001
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Source analysis
We then reconstructed putative magnetic-field sources from the

scalp activity (using a multiple sparse priors MSP inverse solution

[24,25]), in order to infer the cortical regions most likely to have

generated the signals observed in the expected MMN time-

window (between 100–200 ms from stimulus onset). As described

above, the differences in fields measured at the scalp were clearly

statistically significant, even when we accounted for the fact that

tests were repeated for each electrode and each time point. Here,

we sought to identify the most likely sources of these significant

effects. As the number of cortical voxels considered was much

larger than the number of electrodes, differences in reconstructed

source activity generally did not appear significant after naı̈ve

correction for multiple testing – even though the significant scalp-

field differences must, of course, originate from sources some-

where in the brain. Thus, we identified putative source locations

using uncorrected (p,0.05) significance thresholds, and then

performed a set-wise significance analysis using anatomical masks

defined by prior studies. This procedure does leave open the

possibility of errors in the precise localisation of activity within

each defined set.

We found a main effect of surprise in bilateral visual, parietal,

and sensory-motor cortices (p,0.05, uncorrected) (see Figure 4a).

We also found an interaction effect (p,0.05, uncorrected) in

similar areas as well as in auditory association cortex, manifest in a

stronger response to odd probes under the narrow compared to

the broad distribution. Although these effects were not significant

when corrected for the multiple comparisons performed over the

whole brain, they were included in sets that showed significant

effects (p,0.05, corrected) when defined by anatomical masks

Figure 3. Sensitivity to statistical contexts in brain scalp data. Spatio-temporal statistical analysis reveals significant effects over bilateral
temporo-parietal areas (displayed at p,0.05, FWE whole-volume corrected) for (a) the main effect of surprise - deviance from the mean (odd vs.
standard, MMN-like response) peaking at about 160, 190, and 310 ms and (b) the interaction, i.e., differences between MMNs under the low and high
variance contexts, peaking at about 120 ms.
doi:10.1371/journal.pcbi.1002999.g003

Figure 4. Sensitivity to statistical contexts revealed at cortical sources. Source reconstruction analysis reveals: (a) main effect of surprise
(larger sensitivity to odd vs. standard probes), (b) larger MMN-like effects under the narrow than the broad distribution and (c) a simple main effect of
surprise. (All effects are displayed at p,0.05, uncorrected).
doi:10.1371/journal.pcbi.1002999.g004

Statistical Learning and Outlier Detection
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derived from previous independent studies (WFU Pick Atlas [26])

for regions expected a priori, such as the effects seen in temporal

[9,27–30] and the parietal [28,30] regions. Thus, these sources

showed MMN-like responses that were larger when the probes

were more unlikely under the contextual distribution (Figure 4b).

As opposed to what we had predicted, we did not find a main

effect of surprise in the associative auditory cortex [9,27,29]. In the

narrow context alone, there was indeed a simple main effect of

surprise in the associative auditory cortex (Figure 4c). However,

the same contrast did not reveal an effect under the broad

distribution (even at p,0.1). This might indicate that an MMN-

like response is generated in the auditory cortex only in the narrow

context, where the odd probes are more unlikely, although it may

also just reflect an interaction between a larger MMN effect-size in

the narrow context and a noisier reconstruction of auditory

cortical sources than parietal ones.

Local adaptation
The analyses so far show that there is an MMN-like differential

response to sounds that are unlikely in a statistical context, when

contrasted with higher probability sounds, and that this difference

is stronger when the difference in probabilities is greater. There

has been some debate about the extent to which MMN-like

responses to frequency deviants may be mediated by frequency-

and temporally-local adaptive processes [31–34]. A number of

different mechanistic theories for MMN generation have been

discussed in great depth (see [35,36] for reviews). One explanation

rests on the fact that changes lead to release from adaptation to

repeated events, or refractoriness, resulting in an enhanced

response to a novel stimulus [33,34]. While this theory is useful

in the case of repeated standards, it does not explain very well why

MMN is elicited by more abstract rules that do not involve change,

or a break in repetition [15,16]. Recent efforts to disentangle

refractoriness and memory-comparison-based contributions to

MMN have been able to demonstrate that there is more to

MMN than simple adaptation [37]. However, in light of this

debate, it was important to determine how far local adaptive or

refractory processes might have contributed to the phenomena we

observed.

Although tones with exactly the odd probe frequency never

occurred by chance under either contextual distribution, tones

with nearby frequencies did, and did so more often in the broad

context than in the narrow. Thus a local spread of adaptive effects,

whereby these contextual tones reduce the size of physiological

response to tones of nearby frequencies including the odd probe

tones, might contribute to the difference in response magnitudes

between the two contexts. On a long-time scale spanning multiple

stimuli [38], such an effect could mediate the physiological

mechanism underlying sensitivity to environmental statistics.

However, if the bulk of the effect were due to adaptation arising

from very recent stimulation, then there would be less reason to

posit a mechanism that accrues and responds to longer-term

regularities.

To study the contribution of local adaptation, we grouped

responses to odd probe sounds according to the number of

preceding sounds, Na, that fell outside a frequency window of width

Dfa specified in octaves and centred on the frequency of the odd

probes (Figure 1). Responses to tones with larger Na would be

expected to suffer less short-range adaptation. We used window

widths ranging from one-third of an octave (roughly the equivalent

rectangular bandwidth, ERB, of a psychoacoustically-defined

‘auditory filter’ [39]) to five times the ERB. Wider windows

yielded too few data to be interpretable.

As there were relatively few responses contributing to each

average ERF in this analysis, particularly for larger values of Na, we

applied a spatial projection filter to find a single weighted

combination of all the MEG channels, common to all participants,

that maximised the signal-to-noise ratio of the filtered signal for all

four types of probe sounds [40]: standard and odd in narrow and

broad contexts (Figure 5a, b). Importantly this spatial filter was not

designed to accentuate differences between the responses to the

different probes. Indeed, depending on the geometry of the signals

and noise, it might be expected to slightly suppress the magnitude of

these differences, whilst simultaneously reducing noise in each signal.

Figure 5c shows the filtered components associated with odd

probe sounds selected according to increasing minimum values of

Na, using the ERB-sized window, as well as the filtered

components for standard probes without selection by Na, for both

distributional contexts. As the threshold value of Na increases, the

peak amplitude of the response to odd probes in the broad context

grows more negative, presumably reflecting a contribution from

local adaptive mechanisms. However, even when the preceding 15

tones (lasting 7.5 s) fell outside the ERB window, the response to

odd probes in the broad context does not reach the same level as

that to odd probes in the narrow context (p,0.05 random

permutation tests applied separately for each threshold). This

general result held true for a range of exclusion windows Dfa

(Figure 5d), with the mean ERFs remaining systematically

separate, although for the larger exclusion windows there were

too few stimuli with large enough values of Na for the effect to still

reach significance. The same observation held when responses

were grouped according to small ranges of Na, rather than by

threshold values (Figure S1). Thus, the difference in response

magnitude to odd probe sounds in the two distributional contexts

cannot be attributed solely to local adaptation mechanisms, and

depends on the distribution of stimuli well outside the auditory

filter or more than 15 stimuli or 7.5 s in the past.

A striking and unexpected observation was that the response to

odd probes in the narrow context seemed to be relatively

unaffected by Na. This might well reflect a difference in the

adaptive impact of other odd probe sounds when compared to

tones whose frequencies are drawn from the distributional context.

In the narrow context most preceding tones that fell within Dfa

were themselves odd probe sounds. The fact that very little

adaptation is seen even when such a tone happens to have fallen in

the very recent past (Na~1 or 2, see Figure S1), raises the

intriguing possibility that once isolated tones are marked by a

physiological mechanism as outliers, they have only reduced, or

even non-existent, adaptive impact on subsequent tones.

Discussion

We provide behavioural and neurophysiological evidence that

humans implicitly track statistical regularities of the sensory

environment. Specifically, our findings show that stimuli that fall

outside an established stochastic pattern evoke behavioural and

neurophysiological responses previously associated with violations

of a repetitive or deterministic sequence. Furthermore, we found

that exactly the same physical stimulus, arriving at the same rate,

evokes faster reaction times (Figure 2) and larger MMN (Figure 3b)

when it is embedded in a statistical pattern, which makes its

occurrence less likely. Furthermore we demonstrated that sensi-

tivity to statistical context, as indexed by different MMN

amplitudes, goes beyond local adaptation of afferent activity in

narrow frequency bands (Figure 5), although adaptation plays an

important role. These observations are consistent with the idea

that observers build an internal model of the predominant

Statistical Learning and Outlier Detection
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stochastic distribution of stimuli, and implicitly and automatically

monitor the environment for stimuli that are outliers to this

distribution.

Earlier behavioural studies [23,41] have shown that a high tone

embedded in a sequence of low tones (or, indeed, a similar

regularity-violating stimulus within another modality) improves

the detection of a simultaneously-presented visual target. In our

experiment, the visual stimulus was obvious enough that it was

very rarely missed. Instead, we noted a consistent decrease in

reaction time when the target onset was simultaneous with an

auditory outlier. We speculate that a reaction-time effect of this

sort is unlikely to depend on relatively slow executive or voluntary

attentive mechanisms that exploit a learnt association; but instead

reflects a low-level multimodal integration driven by the rapidity of

auditory processing [42]. In particular, this suggests that the

processes by which a statistical model of the environment is

formed, and exceptions detected, lie at an early stage of sensory

processing and can act autonomously of controlled attentionally-

demanding executive processing.

This view is supported by the finding that the same probe

stimuli embedded in identical random-frequency backgrounds

evoke an MMN-like response (Figure 3b). There is an extensive

literature showing rapid, and presumably automatic, sensitivity to

changes in stimuli and to violations of deterministic [16] or

sequence-based rules [18]. We add to these findings by showing

that observers also implicitly learn statistical structure, and can

detect outliers from a random distribution. This is evident in the

MMN-like MEG signal that has similar timing to the conventional

MMN evoked by sequence violations. Again, we find that the

underlying physiological processes are sensitive to the overall

statistics of stimuli and to the likelihood of an event conditioned

upon its temporal context [22]: identical odd probes generated

Figure 5. Local adaptation effects. (a) Pattern of weights of the spatial filter used to extract the maximal signal-to-noise spatial projection of the
MEG data. (b) The implied spatial pattern of the signal extracted by the filter shown in (a). (c) ERFs obtained by averaging responses to odd probes
(solid lines) selected by threshold value of Na (number of preceding tones falling outside a frequency window of width Dfa , here 1/3 octave). ERFs are
separated by context (blue narrow; red broad). Shading for Na§1 curves show regions averaged to obtain peak values in (d). Adaptation is evident
for odd probes in the broad context but small or absent in the narrow context. ERFs for standard probes (dashed lines) are also shown for reference,
and are not grouped by Na. (d) Adaptation effects for a range of windows. Curves show ERF peaks (averaged as indicated in (c)) for odd probes in
narrow (blue) and broad (red) context as a function of threshold value of Na, calculated for different frequency exclusion windows (colour saturation,
see legend at top). Error bars show standard errors. Grey stars indicate pairs of ERFs that were significantly different at the p,0.05 level according to a
random permutation test. Lines at the bottom show the number of probe tones (combined across all subjects) that contribute to each ERF. Numbers
fall as threshold Na grows, contributing to greater uncertainty in measurements.
doi:10.1371/journal.pcbi.1002999.g005

Statistical Learning and Outlier Detection

PLOS Computational Biology | www.ploscompbiol.org 6 March 2013 | Volume 9 | Issue 3 | e1002999



larger MMN responses when embedded in a narrower random-

frequency context.

Source reconstruction suggested that the statistical-context-

sensitive responses arose in the parietal and temporal cortices

[9,27,30]. Intriguingly, sensitivity to sound statistics was not strong

in the auditory cortex, as observed in previous studies that used

conventional MMN paradigms, but rather in a region posterior to

the primary auditory cortex, which agrees with prior work on

statistical learning [29,43]. These temporal-parietal areas have

also been associated with stimulus-driven bottom-up saliency [28]

and attention orientation to unexpected events [44]. Some

behavioural studies have suggested that such involuntary redirec-

tion of attention may interfere [13,14] with goal-directed

behaviour, whereas others have shown evidence pointing towards

facilitation [23,41].

An important question is whether the sensitivity we see reflects

global statistics, integrated over a wide range of frequencies and

long time periods, or whether it is partly due to local adaptation.

In particular, it might be that known stimulus-specific adaptive

phenomena in the auditory cortex [45] underlie the physiological

and behavioural changes that we observe. Three lines of argument

point towards more global processing. First, although most stimuli

in the auditory stream had frequencies drawn from either the

narrow or the broad contextual distribution, the odd probe stimuli

themselves were presented at the same rate within both contexts.

Furthermore, even in the broad context only about 1% of random

contextual tones fell within a semitone-wide band around the odd

probe frequency. Thus the pattern of 2000-Hz tones themselves

differed negligibly between the two contexts (a very different

situation to that found in studies of stimulus-specific adaptation

[38,45] where it is the probabilities of the different tones

themselves that are varied), and the difference in both behavioural

and physiological response effects must have been due to the

distribution of contextual tones at other frequencies. Second, we

looked at the impact that the recency of local-frequency

stimulation had on the magnitude of the MMN. We certainly

noted signs of local frequency-specific adaptation in the responses

to odd probe tones occurring within the broad context: there, odd

probes proceeded by longer periods in which all stimuli fell outside

a frequency window (i.e., large Na) evoked a stronger response

than those with recent in-window stimulation (Figure 5c, d).

However, even when we looked only at odd probes in the broad

context for which the preceding 15 or more tones (spanning 7.5 s)

fell outside a window with rectangular bandwidth equivalent to a

psychophysical auditory filter or wider, the size of the MMN was

significantly larger than that evoked by odd probes in the narrow

context. (Long time-scale adaptation has also been reported in the

context of SSA [38], but may well point to more global processing

even in that context). Third, we observed very little, if any, local

adaptive difference in the magnitude of MMN evoked by odd

probes in the narrow context. In this context most of the

potentially adapting stimuli that fell within the frequency window

of the analysis were themselves other odd probe tones. Thus, it

seems that when presented in the narrow context, odd probe tones

remain surprising even if another odd probe was presented very

recently. Indeed, it seems possible that odd probes in the narrow

context are heard as distinct, as though they were generated by a

different process. Again, this finding points to a sensitivity to the

global context [22,31] within which specific stimuli are heard.

Taken together, these results highlight the fact that the brain’s

ability to detect regular patterns in the environment, and register

violations of these patterns, goes beyond repetitive [8] or

sequence-based rules [16,46]. Instead, the apparently implicit

physiological process associated with the MMN seems to extract at

least the first two moments of the distribution of stimuli in the

environment, and then to drive stronger responses to tones that

are more improbable within this encoded distribution.

Our results demonstrate the brain’s ability to implicitly and

efficiently encode the statistical regularity of events in the

environment. In keeping with normative ideas of predictive

coding [3,5,47] and of sensitivity to varying forms of uncertainty

[6], we suggest that this computation might be essential for

perceptual processing in a noisy environment, and for decision-

making in an uncertain world.

Methods

Ethics statement
Informed consent was obtained from each subject, after full

explanation of the experiment, according to the procedures

approved by the University College London Research Ethics

Committee.

Participants
We recorded behavioural reaction time data from ten partic-

ipants (5 females, 5 males, age range 24–32 years, and mean age

26 years), and MEG data from a separate pool of eighteen

participants (8 males, 10 females, age range 19–47 years, and

mean age 28 years). All participants were healthy volunteers, had

normal to corrected vision and hearing, and were naive to the

purpose of the study. Participants were monetarily compensated

for their time.

Experimental design
We designed a novel paradigm in which participants passively

listened to a stream of pure tone sounds, whilst performing a visual

change-detection task. The experimental design is depicted in

Figure 1. The frequencies of most of the tone pulses were sampled

from a Gaussian distribution in log-frequency, centred at 500 Hz

and with one of two standard deviations: low (sl~0:5 octaves) or

high (sh~1:5 octaves). All tone pulses had an equal duration of

50 ms with smooth rise and fall periods of 10 ms each, were set to

the same comfortable loudness level throughout the experiment,

and were presented every 500 ms. Probe tones, whose frequencies

were either equal to the mean of the distributions (standard

probes: fs~500Hz) or two octaves above it (odd probes:

fo~2000Hz), were embedded within the random-frequency

streams. Both types of probe tone were inserted into the stream

pseudo-randomly, with each presented 10% of the time. The

probe tones were not distinguished from those of the background

distribution, and thus participants experienced a slightly distorted

Gaussian distribution of frequencies which combined two point-

masses of 10% probability each (the standard and odd probes) with

the Gaussian contributing 80% of the frequencies. Although this

renders the overall distribution not strictly Gaussian, the 10%

prevalence of probes was necessary to ensure a sufficient number

of trials (and SNR) to see the MMN-like response. Only the width

of the Gaussian part of the distribution differed between the two

conditions. Behavioural and physiological comparisons were all

based on responses to the probes alone, and these were identical in

both conditions. Participants were told to ignore the sounds and

respond only to the visual task, which required them to press a key

each time they saw a brief change in the luminance of a fixation

cross. The interval between successive luminance changes was

randomly chosen between 2000 ms and 5000 ms, in steps of

500 ms. In the behavioural experiment (Experiment 1), these

changes were coincident with the probe sounds, both standard and

odd. In the MEG experiment (Experiment 2) luminance changes
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were made independent of the sound stream so as to avoid

introducing confounding motor or attentional signals.

Experiment 1 lasted approximately 30 minutes and was divided

into 4 blocks. Both high and low variance conditions were

presented in all blocks for half of the time, and in randomised

order. In Experiment 2, the high and low variance conditions were

presented in two separate blocks that each lasted for 13 minutes

(resulting in about 160 probe tones of each type per condition per

participant). The order of these blocks was counter-balanced

across participants.

The stimuli and task protocols were written in MATLAB, using

the Cogent 2000 toolbox (http://www.vislab.ucl.ac.uk/cogent.

php).

MEG recordings and preprocessing
Measurements were acquired with a CTF 275-channel whole-

head MEG system, with 274 functioning second-order axial

gradiometers arranged in a helmet shaped array. Three

energised electrical coils were attached to the fiducials (nasion,

and left and right preauricular), in order to continuously

monitor the position of each participant’s head with respect to

the MEG sensors. Auditory stimuli were binaurally presented at

a comfortable loudness level through flexible tubing connected

to piezo electric transducers positioned approximately 1 m

below the sensor array. Data were collected at a sampling rate of

600 Hz, and recording epochs extracted stretching from 100 ms

before to 350 ms after the onset of each sound (Figure 1, inset).

For the spatio-temporal and source analyses, the data were

filtered with a passband between 0.5 and 30 Hz, down-sampled

to 200 Hz, and baseline-corrected with reference to the pre-tone

interval (2100–0 ms).

Spatio-temporal image conversion
The averaged sensor data, or ERFs, were converted into 3-

dimensional spatio-temporal volumes. This was achieved by

interpolating and dividing the scalp data per time point into a 2-

dimensional spatial 64664 matrix. We obtained one 2D image for

every time bin. These images were then stacked according to their

peristimulus temporal order resulting in a 3D spatio-temporal

image volume with dimensions 64664691 per participant.

Spatio-temporal statistical maps
For each subject, the 3D spatio-temporal image volumes were

modelled with a mass univariate general linear model (GLM) as

implemented in SPM [48]. We modelled the data with one

regressor per condition: standard (s) and odd (o) probes, under

high (h) and low (l) contextual variances, yielding coefficients

bsh,bsl ,boh,bol , as well as two nuisance regressors that accounted

for the block and variance factor confound. We then performed

within-subject F-contrasts for (1) the main effect of surprise

(regardless of contextual variance) [(bolzboh)=(bslzbsh)], and

(2) the interaction or differences between odds and standards in the

context of a low, as compared to a high variance distribution,

[(bol{bsl)=(boh{bsh)]. We then carried these contrasts over to a

one-sample between-subject F-test statistic and assessed the

significance of the tests across the group. This approach allowed

us to make inferences on all 3 data dimensions, i.e., 2-dimensional

sensor space over the whole peristimulus time dimension. The

same sort of statistical analysis was performed on the 3D spatial

image volume obtained after the source localization step (see

below). All sensor effects are reported at a threshold of p,0.05,

with a family-wise error (FWE) correction for multiple-comparison

for the whole volume.

Source reconstruction
We obtained source estimates on the cortical mesh by

reconstructing scalp activity with a single-shell head model, and

inverting a forward model with multiple sparse priors (MSP)

assumptions for the variance components [25] under group

constraints [24]. This allowed for inferences about the most likely

cortical regions that generated the data observed in the MMN

time-window [100–200 ms], pre-selected according to predictions

derived from previous MMN studies and our scalp results. We

obtained images from these reconstructions for each of the four

conditions in every subject. These images were smoothed at

FWHM 86868 mm3. We then computed the main effect of

surprise and interaction (surprise by contextual variance) using

conventional SPM analysis [48]. Similarly to the spatio-temporal

statistical tests (described above), we were able to search for

significant effects over the whole brain 3-dimensional space.

Effects (t-statistics) are displayed at an uncorrected threshold of

p,0.05 (Figure 4). These weaker significance criteria were used

for post-hoc visualisation, once the effects had been established

under robust criteria at the scalp level.

Spatial filtering
The local adaptation analysis (described below) required the

construction of ERFs based on relatively small numbers of

responses. As single-channel ERFs for low trial counts exhibited

substantial noise, we used a single-output spatial filter to combine

all channels in a way that maximised the average signal-to-noise

ratio across the four probe conditions [40]. We constructed two

covariance matrices as follows. Let x(n)
c (t) be a vector representing

the multidimensional MEG measurements at sample t (of T in the

epoch), associated with the nth repetition (of Nc for the condition),

of probe tones under the condition labelled by c (either standard or

odd probes, in either the high- or low-variance context); and let

xc(t) be the mean measurement over all Nc stimuli of that

condition. Then the condition-specific signal power matrix is

Sc~
1

T

XT

t~1

xc(t):xc(t)0

and the noise covariance matrix is

Vc~
1

NcT

XNc

n~1

XT

t~1

x(n)
c (t):x(n)

c (t)0{Sc

We constructed overall signal power S and noise covariance V

matrices by averaging the four corresponding condition-specific

matrices. The maximum signal-to-noise spatial filter was then the

eigenvector w corresponding to the largest eigenvalue solution of

the generalised eigenvalue problem:

Sw~lVw

ERFs were constructed for each condition using the one-

dimensional filtered signal (Figure 5c):

y(n)
c (t)~w0:x(n)

c (t)

The filter w represents a compromise between spatial patterns of

greater signal and those of lesser noise (Figure 5a). However, it is

possible to recover the effective signal direction either by

correlating the filtered output with the multidimensional MEG
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signal or (equivalently, and more simply) pre-multiplying w by the

noise matrix V (Figure 5b).

Local adaptation analysis
To examine the contribution of local adaptive mechanisms to

our findings, we labelled responses to odd probe tones according to

the number (Na) of preceding tones of all types that fell outside a

window of full-width Dfa in log-frequency centred at the odd

probe frequency (see Figure 1). We then averaged responses for

which Na exceeded a threshold value (Figure 5c, d) to yield

separate ERFs for each local adaptation condition. The (negative)

peak value was computed for each separate response by averaging

samples that fell within 30 ms of the minimum of the

corresponding ERF curve. These peak values were compared

between the broad and narrow context using a one-tailed sampled

permutation test in which the context labels for each response

were randomly permuted 2500 times, with the fraction of

permutations for which the difference between broad and narrow

context responses was greater than that observed for the true

assignment providing the corresponding p-value. As we were

interested in the hypothesis that the difference would be significant

in all adaptation groups, we used an independent threshold of 0.05

for significance.

All the analyses were performed with SPM (http://www.fil.ion.

ucl.ac.uk/spm/) and in-house MATLAB code.

Supporting Information

Figure S1 Adaptation effects for a range of windows.
Curves show ERF peaks for odd probes in narrow (blue) and broad

(red) context grouped by different threshold value of Na, number of

preceding tones falling outside a frequency window of width Dfa,

calculated for different frequency exclusion windows (colour

saturation, see legend at top). Error bars show standard errors.

Grey stars indicate pairs of ERFs that were significantly different

at the p,0.05 level according to a random permutation test. Lines

at the bottom show the number of probe tones (combined across

all subjects) that contribute to each ERF.

(TIFF)

Figure S2 Evoked responses to standard and odd
probes in the broad and narrow contexts. Whole head

274-channel scalp responses (left). Right parietal channel (MRP57)

shows averaged responses evoked by odd probes in the narrow

(green) and broad (turquoise) contexts, and standard odd probes in

the narrow (blue) and broad (red) contexts (right).

(TIF)
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