49 research outputs found

    Field trial on glucose-induced insulin and metabolite responses in Estonian Holstein and Estonian Red dairy cows in two herds

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insulin secretion and tissue sensitivity to insulin is considered to be one of the factors controlling lipid metabolism <it>post partum</it>. The objective of this study was to compare glucose-induced blood insulin and metabolite responses in Estonian Holstein (EH, n = 14) and Estonian Red (ER, n = 14) cows.</p> <p>Methods</p> <p>The study was carried out using the glucose tolerance test (GTT) performed at 31 ± 1.9 days <it>post partum</it> during negative energy balance. Blood samples were obtained at -15, -5, 5, 10, 20, 30, 40, 50 and 60 min relative to infusion of 0.15 g/kg BW glucose and analysed for glucose, insulin, triglycerides (TG), non-esterified fatty acids (NEFA), cholesterol and β-hydroxybutyrate (BHB). Applying the MIXED Procedure with the SAS System the basal concentration of cholesterol, and basal concentration and concentrations at post-infusion time points for other metabolites, area under the curve (AUC) for glucose and insulin, clearance rate (CR) for glucose, and maximum increase from basal concentration for glucose and insulin were compared between breeds.</p> <p>Results</p> <p>There was a breed effect on blood NEFA (<it>P </it>< 0.05) and a time effect on all metabolites concentration (<it>P </it>< 0.01). The following differences were observed in EH compared to ER: lower blood insulin concentration 5 min after glucose infusion (<it>P </it>< 0.05), higher glucose concentration 20 (<it>P </it>< 0.01) and 30 min (<it>P </it>< 0.05) after infusion, and higher NEFA concentration before (<it>P </it>< 0.01) and 5 min after infusion (P < 0.05). Blood TG concentration in ER remained stable, while in EH there was a decrease from the basal level to the 40<sup>th </sup>min nadir (<it>P </it>< 0.01), followed by an increase to the 60<sup>th </sup>min postinfusion (<it>P </it>< 0.01).</p> <p>Conclusion</p> <p>Our results imply that glucose-induced changes in insulin concentration and metabolite responses to insulin differ between EH and ER dairy cows.</p

    Effects of dry period energy intake on insulin resistance, metabolic adaptation, and production responses in transition dairy cows on grass silage-based diets

    Get PDF
    High energy intake in the dry period has reportedly had adverse effects on mobilization of body reserves, dry matter intake, and productivity of dairy cows. We investigated whether grass silage (GS) fed ad libitum (high energy intake, HEI; 141% of daily metabolizable energy requirements) in an 8-wk dry period affects metabolic adaptation-specifically, peripheral insulin resistance-compared with a total mixed ration consisting of GS, wheat straw, and rapeseed meal (55/40/5%; controlled energy intake, CEI; 108% of metabolizable energy/d) fed ad libitum. Multiparous Ayrshire dairy cows (n = 16) were used in a randomized complete block design until 8 wk after parturition. Commercial concentrates were fed 1 and 2 kg/d during the last 10 to 6 and 5 to 0 d before the expected calving date, respectively. Postpartum, a similar lactation diet with ad libitum access to GS and increasing concentrate allowance (maximum of 16 kg/d) was offered to all. The HEI group gained more body weight and had higher plasma insulin, glucose, and beta-hydroxybutyrate concentrations than the CEI group prepartum. Postpartal plasma glucose tended to be higher and milk yield was greater from wk 5 onward for HEI compared with CEI cows. An intravenous glucose tolerance test (IVGTT) was performed at -13 +/- 5 d and 9 +/- 1 d relative to calving. The HEI cows had greater insulin response to glucose load and smaller area under the response curve for glucose than CEI cows in prepartal IVGTT. Thus, compensatory insulin secretion adapted to changes in insulin sensitivity of the peripheral tissues, preserving glucose tolerance of HEI cows. Higher insulin levels were needed in HEI cows than in CEI cows to elicit a similar decrement of nonesterified fatty acid concentration in prepartal wurr, suggesting reduced inhibition of lipolysis by insulin in HEI cows before parturition. In conclusion, high energy intake of moderately digestible GS with low concentrate feeding in the close-up dry period did not have adverse effects on metabolic adaptation, insulin sensitivity, and body mobilization after parturition. Instead, this feeding regimen was more beneficial to early-lactation performance than GS-based total mixed ration diluted with wheat straw.Peer reviewe

    Severe autosomal recessive retinitis pigmentosa maps to chromosome 1p13.3–p21.2 between D1S2896 and D1S457 but outside ABCA4

    Full text link
    A severe form of autosomal recessive retinitis pigmentosa (arRP) was identified in a large Pakistani family ascertained in the Punjab province of Pakistan. All affected individuals in the family had night blindness in early childhood, early complete loss of useful vision, and typical RP fundus changes plus macular degeneration. After exclusion of known arRP loci, a genome-wide scan was performed using microsatellite markers at about 10 cM intervals and calculating two-point lod scores. PCR cycle dideoxynucleotide sequencing was used to sequence candidate genes inside the linked region for mutations. RP in this family shows linkage to markers in a 10.5 cM (8.9 Mbp) region of chromosome 1p13.3–p21.2 between D1S2896 and D1S457. D1S485 yields the highest lod score of 6.54 at θ=0. Sequencing the exons and intron–exon boundaries of five candidate genes and six ESTs in this region, OLFM3, GNAI3, LOC126987, FLJ25070, DKFZp586G0123, AV729694, BU662869, BU656110, BU171991, BQ953690, and CA397743, did not identify any causative mutations. This novel locus lies approximately 4.9 cM (7.1 Mbp) from ABCA4, which is excluded from the linked region. Identification and study of this gene may help to elucidate the phenotypic diversity of arRP mapping to this region.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47597/1/439_2005_Article_54.pd

    Body condition and insulin resistance interactions with periparturient gene expression in adipose tissue and lipid metabolism in dairy cows.

    No full text
    Adipose tissue plays an important role in a cow's ability to adapt to the metabolic demands of lactation, because of its central involvement in energy metabolism and immunity. High adiposity and adipose tissue resistance to insulin are associated with excessive lipid mobilization. We hypothesized that the response to a glucose challenge differs between cows of different body condition 21 d before and after calving and that the responses are explainable by gene expression in subcutaneous adipose tissue (SAT). In addition, we aimed to investigate insulin resistance with gene expression in SAT and lipid mobilization around parturition. Multiparous Holstein cows were grouped according to body conditions score (BCS) 4 wk before calving, as follows: BCS ≤ 3.0 = thin (T, n = 14); BCS 3.25 to 3.5 = optimal (O, n = 14); BCS ≥ 3.75 = over-conditioned (OC, n = 14). We collected SAT on d -21 and d 21 relative to calving. A reverse-transcriptase quantitative (RT-q)PCR was used to measure gene expression related to lipid metabolism. One hour after the collection of adipose tissue, an intravenous glucose tolerance test was carried out, with administration of 0.15 g of glucose per kg of body weight (with a 40% glucose solution). Once weekly from the first week before calving to the third week after calving, a blood sample was taken. The transition to lactation was associated with intensified release of energy stored in adipose tissue, a decrease in the lipogenic genes lipoprotein lipase (LPL) and diacylglycerol O-acyltransferase 2 (DGAT2), and an increase in the lipolytic gene hormone-sensitive lipase (LIPE). On d -21, compared with T cows, OC cows had lower mRNA abundance of LPL and DGAT2, and the latency of fatty acid response after glucose infusion was also longer (8.5 vs. 23.3 min) in OC cows. Cows with higher insulin area under the curve on d -21 had concurrently lower LPL and DGAT2 gene expression and greater concentration of fatty acids on d -7, d 7, and d 14. In conclusion, high adiposity prepartum lowers the whole-body lipid metabolism response to insulin and causes reduced expression of lipogenic genes in SAT 3 weeks before calving. In addition, more pronounced insulin release after glucose infusion on d -21 is related to higher lipid mobilization around calving, indicating an insulin-resistant state, and is associated with lower expression of lipogenic genes in SAT

    Adipose tissue insulin receptor and glucose transporter 4 expression, and blood glucose and insulin responses during glucose tolerance tests in transition Holstein cows with different body condition.

    No full text
    Glucose uptake in tissues is mediated by insulin receptor (INSR) and glucose transporter 4 (GLUT4). The aim of this study was to examine the effect of body condition during the dry period on adipose tissue mRNA and protein expression of INSR and GLUT4, and on the dynamics of glucose and insulin following the i.v. glucose tolerance test in Holstein cows 21 d before (d -21) and after (d 21) calving. Cows were grouped as body condition score (BCS) ≤3.0 (thin, T; n = 14), BCS = 3.25 to 3.5 (optimal, O; n = 14), and BCS ≥3.75 (overconditioned, OC; n = 14). Blood was analyzed for glucose, insulin, fatty acids, and β-hydroxybutyrate concentrations. Adipose tissue was analyzed for INSR and GLUT4 mRNA and protein concentrations. During the glucose tolerance test 0.15 g/kg of body weight glucose was infused; blood was collected at -5, 5, 10, 20, 30, 40, 50, and 60 min, and analyzed for glucose and insulin. On d -21 the area under the curve (AUC) of glucose was smallest in group T (1,512 ± 33.9 mg/dL × min) and largest in group OC (1,783 ± 33.9 mg/dL × min), and different between all groups. Basal insulin on d -21 was lowest in group T (13.9 ± 2.32 µU/mL), which was different from group OC (24.9 ± 2.32 µU/mL. On d -21 the smallest AUC 5-60 of insulin in group T (5,308 ± 1,214 µU/mL × min) differed from the largest AUC in group OC (10,867 ± 1,215 µU/mL × min). Time to reach basal concentration of insulin in group OC (113 ± 14.1 min) was longer compared with group T (45 ± 14.1). The INSR mRNA abundance on d 21 was higher compared with d -21 in groups T (d -21: 3.3 ± 0.44; d 21: 5.9 ± 0.44) and O (d -21: 3.7 ± 0.45; d 21: 4.7 ± 0.45). The extent of INSR protein expression on d -21 was highest in group T (7.3 ± 0.74 ng/mL), differing from group O (4.6 ± 0.73 ng/mL), which had the lowest expression. The amount of GLUT4 protein on d -21 was lowest in group OC (1.2 ± 0.14 ng/mL), different from group O (1.8 ± 0.14 ng/mL), which had the highest amount, and from group T (1.5 ± 0.14 ng/mL). From d -21 to 21, a decrease occurred in the GLUT4 protein levels in both groups T (d -21: 1.5 ± 0.14 ng/mL; d 21: 0.8 ± 0.14 ng/mL) and O (d -21: 1.8 ± 0.14 ng/mL; d 21: 0.8 ± 0.14 ng/mL). These results demonstrate that in obese cows adipose tissue insulin resistance develops prepartum and is related to reduced GLUT4 protein synthesis. Regarding glucose metabolism, body condition did not affect adipose tissue insulin resistance postpartum

    Construing biology: An Ideational Perspective

    No full text
    This thesis reports on a linguistic study that is concerned with building a discourse semantic framework for exploring knowledge building through language in undergraduate biology. The linguistic theory that underpins this study is systemic functional linguistics (SFL). One particular dimension of SFL, stratification, conceptualises register (field, tenor and mode) as being realised by patterns of discourse semantics, which are in turn realised by patterns of lexicogrammar. Of particular relevance to knowledge building, particularly to what social realism refers to as ‘knowledge structure’ (Bernstein, 1999), is the register variable field, which is construed through the patterns of ideational discourse semantics. The current modelling of ideational semantics, including the ‘ideation base’ proposed in Halliday & Matthiessen (1999) and the ideational discourse semantics established in Martin (1992), are currently insufficient for exploring the construal of field. On the one hand, Halliday & Matthiessen’s description of ideation base is not clearly dissociated from grammatical functions; on the other hand, Martin’s description of ideational discourse semantics is not independent from the description of field. Accordingly, in order to pursue systematically the construal of field, this study aims to develop discourse semantic systems that can take responsibility for both field and lexicogrammar and clarify the stratification relations among register, discourse semantics and lexicogrammar. The exploration of ideational discourse semantics is approached with respect to its construal of two aspects in field – taxonomy and activity sequencing (Martin, 1992). In order to illustrate the exploration of discourse semantic systems as well as demonstrate the analysis of texts through the framework, this study analyses texts that instantiate knowledge building in biology at the undergraduate level. This study makes two significant contributions. Firstly it contributes to the development of ideational discourse semantics in an SFL framework. In doing so it clarifies the interstratal relationships across field, discourse semantics and lexicogrammar, and it specifies distinctive terminologies at all strata. Secondly, this work provides a significant ground for exploring knowledge building of all kinds. By focusing on texts produced in undergraduate biology, it contributes to a linguistic understanding of scientific discourse, and points out key characteristics of knowledge building in biology at the undergraduate level
    corecore