902 research outputs found

    White Matter, Gray Matter and Cerebrospinal Fluid Segmentation from Brain Magnetic Resonance Imaging Using Adaptive U-Net and Local Convolutional Neural Network

    Get PDF
    According to the World Alzheimer Report 2015, 46 million people are living with dementia in the world. The diagnosis of diseases helps doctors treating patients better. One of the signs of diseases is related to white matter, grey matter and cerebrospinal fluid. Therefore, the automatic segmentation of three tissues in brain imaging especially from magnetic resonance imaging (MRI) plays an important role in medical analysis. In this research, we proposed an effective approach to segment automatically these tissues in three-dimensional (3D) brain MRI. First, a deep learning model is used to segment the sure and unsure regions. In the unsure region, another deep learning model is used to classify each pixel. In the experiments, an adaptive U-net model is used to segment the sure and unsure regions, and the Local Convolutional Neural Network (CNN) model with multiple inputs is used to classify each pixel only in the unsure region. Our method was evaluated with a real image database, Internet Brain Segmentation Repository database, with 18 persons (IBSR 18) (https://www.nitrc.org/projects/ibsr) and compared with state of art methods being the results very promising

    Depression and anxiety in relation to cancer incidence and mortality: a systematic review and meta-analysis of cohort studies

    Full text link
    The link between depression and anxiety status and cancer outcomes has been well-documented but remains unclear. We comprehensively quantified the association between depression and anxiety defined by symptom scales or clinical diagnosis and the risk of cancer incidence, cancer-specific mortality, and all-cause mortality in cancer patients. Pooled estimates of the relative risks (RRs) for cancer incidence and mortality were performed in a meta-analysis by random effects or fixed effects models as appropriate. Associations were tested in subgroups stratified by different study and participant characteristics. Fifty-one eligible cohort studies involving 2,611,907 participants with a mean follow-up period of 10.3 years were identified. Overall, depression and anxiety were associated with a significantly increased risk of cancer incidence (adjusted RR: 1.13, 95% CI: 1.06–1.19), cancer-specific mortality (1.21, 1.16–1.26), and all-cause mortality in cancer patients (1.24, 1.13–1.35). The estimated absolute risk increases (ARIs) associated with depression and anxiety were 34.3 events/100,000 person years (15.8–50.2) for cancer incidence and 28.2 events/100,000 person years (21.5–34.9) for cancer-specific mortality. Subgroup analyses demonstrated that clinically diagnosed depression and anxiety were related to higher cancer incidence, poorer cancer survival, and higher cancer-specific mortality. Psychological distress (symptoms of depression and anxiety) was related to higher cancer-specific mortality and poorer cancer survival but not to increased cancer incidence. Site-specific analyses indicated that overall, depression and anxiety were associated with an increased incidence risks for cancers of the lung, oral cavity, prostate and skin, a higher cancer-specific mortality risk for cancers of the lung, bladder, breast, colorectum, hematopoietic system, kidney and prostate, and an increased all-cause mortality risk in lung cancer patients. These analyses suggest that depression and anxiety may have an etiologic role and prognostic impact on cancer, although there is potential reverse causality; Furthermore, there was substantial heterogeneity among the included studies, and the results should be interpreted with caution. Early detection and effective intervention of depression and anxiety in cancer patients and the general population have public health and clinical importance

    Protective Effect of Ginseng Polysaccharides on Influenza Viral Infection

    Get PDF
    Ginseng polysaccharide has been known to have multiple immunomodulatory effects. In this study, we investigated whether Panax ginseng polysaccharide (GP) would have a preventive effect on influenza infection. Administration of mice with GP prior to infection was found to confer a survival benefit against infection with H1N1 (A/PR/8/34) and H3N2 (A/Philippines/82) influenza viruses. Mice infected with the 2009 H1N1 virus suspended in GP solution showed moderately enhanced survival rates and lower levels of lung viral titers and the inflammatory cytokine (IL-6). Daily treatment of vaccinated mice with GP improved their survival against heterosubtypic lethal challenge. This study demonstrates the first evidence that GP can be used as a remedy against influenza viral infection

    Chalcogenide Glass-on-Graphene Photonics

    Get PDF
    Two-dimensional (2-D) materials are of tremendous interest to integrated photonics given their singular optical characteristics spanning light emission, modulation, saturable absorption, and nonlinear optics. To harness their optical properties, these atomically thin materials are usually attached onto prefabricated devices via a transfer process. In this paper, we present a new route for 2-D material integration with planar photonics. Central to this approach is the use of chalcogenide glass, a multifunctional material which can be directly deposited and patterned on a wide variety of 2-D materials and can simultaneously function as the light guiding medium, a gate dielectric, and a passivation layer for 2-D materials. Besides claiming improved fabrication yield and throughput compared to the traditional transfer process, our technique also enables unconventional multilayer device geometries optimally designed for enhancing light-matter interactions in the 2-D layers. Capitalizing on this facile integration method, we demonstrate a series of high-performance glass-on-graphene devices including ultra-broadband on-chip polarizers, energy-efficient thermo-optic switches, as well as graphene-based mid-infrared (mid-IR) waveguide-integrated photodetectors and modulators

    Identification of the initial molecular changes in response to circulating angiogenic cells-mediated therapy in critical limb ischemia

    Get PDF
    BackgroundCritical limb ischemia (CLI) constitutes the most aggressive form of peripheral arterial occlusive disease, characterized by the blockade of arteries supplying blood to the lower extremities, significantly diminishing oxygen and nutrient supply. CLI patients usually undergo amputation of fingers, feet, or extremities, with a high risk of mortality due to associated comorbidities.Circulating angiogenic cells (CACs), also known as early endothelial progenitor cells, constitute promising candidates for cell therapy in CLI due to their assigned vascular regenerative properties. Preclinical and clinical assays with CACs have shown promising results. A better understanding of how these cells participate in vascular regeneration would significantly help to potentiate their role in revascularization.Herein, we analyzed the initial molecular mechanisms triggered by human CACs after being administered to a murine model of CLI, in order to understand how these cells promote angiogenesis within the ischemic tissues.MethodsBalb-c nude mice (n:24) were distributed in four different groups: healthy controls (C, n:4), shams (SH, n:4), and ischemic mice (after femoral ligation) that received either 50 mu l physiological serum (SC, n:8) or 5x10(5) human CACs (SE, n:8). Ischemic mice were sacrificed on days 2 and 4 (n:4/group/day), and immunohistochemistry assays and qPCR amplification of Alu-human-specific sequences were carried out for cell detection and vascular density measurements. Additionally, a label-free MS-based quantitative approach was performed to identify protein changes related.ResultsAdministration of CACs induced in the ischemic tissues an increase in the number of blood vessels as well as the diameter size compared to ischemic, non-treated mice, although the number of CACs decreased within time. The initial protein changes taking place in response to ischemia and more importantly, right after administration of CACs to CLI mice, are shown.ConclusionsOur results indicate that CACs migrate to the injured area; moreover, they trigger protein changes correlated with cell migration, cell death, angiogenesis, and arteriogenesis in the host. These changes indicate that CACs promote from the beginning an increase in the number of vessels as well as the development of an appropriate vascular network.Institute of Health Carlos III, ISCIII; Junta de Andaluci

    Highly stretchable polymer semiconductor films through the nanoconfinement effect

    Get PDF
    Soft and conformable wearable electronics require stretchable semiconductors, but existing ones typically sacrifice charge transport mobility to achieve stretchability. We explore a concept based on the nanoconfinement of polymers to substantially improve the stretchability of polymer semiconductors, without affecting charge transport mobility. The increased polymer chain dynamics under nanoconfinement significantly reduces the modulus of the conjugated polymer and largely delays the onset of crack formation under strain. As a result, our fabricated semiconducting film can be stretched up to 100% strain without affecting mobility, retaining values comparable to that of amorphous silicon. The fully stretchable transistors exhibit high biaxial stretchability with minimal change in on current even when poked with a sharp object. We demonstrate a skinlike finger-wearable driver for a light-emitting di

    Graphene Photonics and Optoelectronics

    Full text link
    The richness of optical and electronic properties of graphene attracts enormous interest. Graphene has high mobility and optical transparency, in addition to flexibility, robustness and environmental stability. So far, the main focus has been on fundamental physics and electronic devices. However, we believe its true potential to be in photonics and optoelectronics, where the combination of its unique optical and electronic properties can be fully exploited, even in the absence of a bandgap, and the linear dispersion of the Dirac electrons enables ultra-wide-band tunability. The rise of graphene in photonics and optoelectronics is shown by several recent results, ranging from solar cells and light emitting devices, to touch screens, photodetectors and ultrafast lasers. Here we review the state of the art in this emerging field.Comment: Review Nature Photonics, in pres

    Zinc Overload Enhances APP Cleavage and Aβ Deposition in the Alzheimer Mouse Brain

    Get PDF
    BACKGROUND: Abnormal zinc homeostasis is involved in β-amyloid (Aβ) plaque formation and, therefore, the zinc load is a contributing factor in Alzheimer's disease (AD). However, the involvement of zinc in amyloid precursor protein (APP) processing and Aβ deposition has not been well established in AD animal models in vivo. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, APP and presenilin 1 (PS1) double transgenic mice were treated with a high dose of zinc (20 mg/ml ZnSO4 in drinking water). This zinc treatment increased APP expression, enhanced amyloidogenic APP cleavage and Aβ deposition, and impaired spatial learning and memory in the transgenic mice. We further examined the effects of zinc overload on APP processing in SHSY-5Y cells overexpressing human APPsw. The zinc enhancement of APP expression and cleavage was further confirmed in vitro. CONCLUSIONS/SIGNIFICANCE: The present data indicate that excess zinc exposure could be a risk factor for AD pathological processes, and alteration of zinc homeostasis is a potential strategy for the prevention and treatment of AD

    Fast-TIPL Occurs for Salient Images without a Memorization Requirement in Men but Not in Women

    Get PDF
    Recent research of task-irrelevant perceptual learning (TIPL) demonstrates that stimuli that are consistently presented at relevant point in times (e.g. with task-targets or rewards) are learned, even in the absence of attention to these stimuli. However, different research paradigms have observed different results for how salient stimuli are learned; with some studies showing no learning, some studies showing positive learning and others showing negative learning effects. In this paper we focused on how the level of processing of stimuli impacts fast-TIPL. We conducted three different experiments in which the level of processing of the information paired with a target was manipulated. Our results indicated that fast-TIPL occurs when participants have to memorize the information presented with the target, but also when they just have to process this information for a secondary task without an explicit memorization of those stimuli. However, fast-TIPL does not occur when participants have to ignore the target-paired information. This observation is consistent with recent models of TIPL that suggest that attentional signals can either enhance or suppress learning depending on whether those stimuli are distracting or not to the subjects' objectives. Our results also revealed a robust gender effect in fast-TIPL, where male subjects consistently show fast-TIPL, whereas the observation of fast-TIPL is inconsistent in female subjects
    • …
    corecore