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ABSTRACT 
According to The World Alzheimer Report 2015, there are 46 million people living with dementia in the world. 
The diagnosis of diseases helps doctors treating patients better. One of the signs of diseases is related to white 
matter, grey matter, and cerebrospinal fluid. Therefore, the automatic segmentation of three tissues in brain 
imaging especially from magnetic resonance imaging (MRI) plays an important role in medical analysis. In this 
research, we proposed an effective approach to segment automatically these tissues in three-dimensional (3D) 
brain MRI. First, a deep learning model is used to segment the sure and unsure regions. In the unsure region, 
another deep learning model is used to classify each pixel. In the experiments, an adaptive U-Net model, is used 
to segment the sure and unsure regions, and the Local Convolutional Neural Network (CNN) model with 
multiple inputs is used to classify each pixel only in the unsure region. Our method was evaluated with a real 
image database, Internet Brain Segmentation Repository database, with 18 persons (IBSR 18) 
(https://www.nitrc.org/projects/ibsr) and compared with state of art methods being the results very promising. 
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1. INTRODUCTION

Nowadays, medical imaging is used for clinical
analysis, medical follow-up, and intervention. Many 
diseases related to the nervous system are commonly 
diagnosed based on magnetic resonance imaging 
(MRI) because this imaging modality shows better 
representations concerning soft tissues than others, 
mainly in the brain [1-2]. Hence, to assist doctors in 
diagnosing patients effectively, applications that 
segment accurately and automatically soft tissues in 
MRI are highly demanded. 

Many brain tissues are important for diagnosing 
brain diseases such as White Matter (WM), Gray 
Matter (GM), Cerebrospinal Fluid (CSF), Thalamus, 
and Amygdala [3]. This article is focused on the 
segmentation of three of these tissues WM, GM, and 
CSF [4] because they are related to Alzheimer’s and 
dementia diseases [5-7]. Each MRI has many slices. 
In Brain MRI T1-weighted, CSF appears dark, WM 
appears bright, and GM appears gray. Each MRI is 
3D and has many 2D slices. The example of three 
tissues from a slice of MRI T1-weighted is shown in 
Figure 1. 



2 

Fig. 1. The example of WM, GM, and CSF tissues in a 
2D slice brain MRI where CSF appears dark, WM 

appears bright, and GM appears gray 

Many methods are proposed for WM, GM, and 
CSF segmentation [8-11]. We categorize current 
methods into two groups: mathematical and machine 
learning-based groups. In the mathematical group, 
there are two well-known tools: Statistical 
Parametric Mapping (SPM) [12] refers to the 
analysis of brain imaging data sequences and 
Functional MRI (fMRI) of the Brain Software 
Library (FSL) [13] is a comprehensive library of 
analysis tools for fMRI, MRI, and Diffusion tensor 
imaging (DTI) brain imaging data. SPM is based on 
Gaussians, smooth intensity variation, and nonlinear 
registration with tissue probability maps. On the 
other hand, FSL segments a 3 dimensional (3D) 
image of the brain into different tissue types based 
on a hidden Markov random field model and an 
associated Expectation-Maximization algorithm. In 
the machine learning group, in the trends of deep 
learning, Convolutional Neural Network (CNN) 
based on a U-shaped network model is used for 
segmentation [14] or CNN combines with traditional 
methods to segment three brain tissues [15]. 

In this article, the segmentation of WM, GM, 
and CSF from 3D Brain MRI using an Adaptive U-
Net model and Local CNN is proposed. The article 
is organized into four sections. Section 2 presents the 
proposed method, which is based on a CNN model 
to segment the sure and unsure regions and after that, 
uses another CNN model to classify each pixel in the 
unsure region. Section 3 reports the experiments 
using the real image database: Internet Brain 
Segmentation Repository database with 18 
persons (IBSR 18). The conclusions are pointed out 
in the last section. 

2. PROPOSED METHOD

The flowchart of our proposed method is shown

in Figure 2. The method is composed of two main 
steps: (1) Using a CNN model to segment the sure 
and unsure regions; and (2) Classification of each 
pixel in the unsure region by using another CNN 
model.  

Fig. 2. The overview of the proposed methodology to 
segment three brain tissues in 3D MRI 

In this study, it is assumed that the sure region is 
entirely inside the region under analysis. Let I be the 
original image, T be a region under analysis, then the 
sure region S is defined as: 

𝑆𝑆 =  �
(𝑆𝑆 ∩ 𝑇𝑇) ⊂ 𝑇𝑇

(𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇) − α) ≤ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑆𝑆) ≤ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇) (1)

Where 0 ≤ α <  𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇) and α is a quantity enough 
to make the (𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑇𝑇) − α) be the smallest WM area 
in T region 

2.1 Sure and unsure regions segmentation 

Deep learning has been used to segment and 
classify medical images for many years. The most 
common type of deep learning is CNN [16]. CNN 
uses layers to transform the input by using filters 
to get the features for classification automatically. 
However, recent approaches using CNN for image 
segmentation show better results than the previous 
ones [17-18]. Therefore, we propose a module to 
segment the sure region based on CNN. The 
developed model contains two important 
components: the segmentation and the unsure 
region detection as depicted in Figure 3. 

Fig. 3. The proposed method to segment the sure and 
unsure regions in a brain MRI 
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There are several methods based on CNN for 
brain tissue segmentation [14-15, 19-21]. The U-Net 
[22] is one of the U-shaped network models and it is
also a convolutional network architecture for fast and
precise segmentation of images. To accomplish the
segmentation step in this paper, we developed a
model, called Adaptive U-Net, that is based on U-
Net and achieves superior segmentation results. The
main features of Adaptive U-Net are:

• The use of multiple kernel size for convolution.

Let’s consider the layer i, and 𝐿𝐿 =
{𝐾𝐾1(𝑎𝑎1, 𝑏𝑏1), … ,𝐾𝐾𝑛𝑛(𝑎𝑎𝑛𝑛 , 𝑏𝑏𝑛𝑛)} as the set of output by 
using n filters K with size (a, b). Hence, the final 
feature maps are the merge of all feature maps of 
layer i. For example, the merge as concatenation is 
⋃ 𝐿𝐿𝑗𝑗𝑚𝑚
𝑗𝑗=1  where U denote the union of feature maps 

and m denote the number of feature maps 

• The use of max-pooling and convolution with
stride for down-sampling.

Let 𝑀𝑀𝑖𝑖(𝑚𝑚,𝑛𝑛) be the output max-pooling of
layer i over non-overlapping rectangular regions of 
size (m, n), and 𝐾𝐾𝑖𝑖,(𝑚𝑚,𝑛𝑛)(𝑎𝑎, 𝑏𝑏) be the output feature 
map of layer i by using convolution kernel with size 
(a, b) and stride (m, n). Then, the total number of 
feature maps that layer i generates is equal to 𝑀𝑀𝑖𝑖 ∪
𝐾𝐾𝑖𝑖. 

In this study, the concept adopted in 
Adaptive U-Net is illustrated in Figure 4. Two 
different kernel sizes were used in each convolution. 
On the other hand, each convolution uses separated 
down-sampling methods. Finally, the output of the 
layer is the concatenation of the obtained feature 
maps which are from each previous convolution. 

Fig. 4. Combination of using two different kernel 
sizes in convolution and two down-sampling 

methods in layer i 

When using autoencoder as the first component 
in the unsure region detection, many regions of the 
resultant segmentation are false because of the down-
sampling layers. Despite the merging with the 
previous layer done, the loss of border pixels and 
small objects in each convolution still happens. 
Therefore, an enhancement of the original CNN 
segmentation was developed to segment the sure and 
unsure regions, Figure 5. 

Fig. 5. A proposed method to segment the sure and 
unsure regions based on the CNN model 

With the results of the segmentation from the 
CNN, 𝐿𝐿: Ω → {1 …𝐾𝐾} the label of each pixel in the 
image I. Let’s consider 2D binary images obtaining 
each label in L, 𝐵𝐵: Ω → (0, 1) is the boundary label 
of n objects in the images, which is computed based 
on the surrounding relations among the borders of a 
binary image [23]. Let 𝑠𝑠𝐿𝐿: Ω → (0, 1) be the label of 
n objects in the images:   

∀𝑥𝑥 ∈ (1 … 𝑛𝑛)  ,  𝑠𝑠𝐿𝐿𝑥𝑥 = �
1 | 𝛴𝛴𝐼𝐼𝑏𝑏,𝑥𝑥 > 𝑃𝑃 
0 | 𝛴𝛴𝐼𝐼𝑏𝑏,𝑥𝑥 ≤ 𝑃𝑃  (2)

where 𝐼𝐼𝑏𝑏,𝑥𝑥 is the object xth of the binary image Ib 
obtained from I, and Σ𝐼𝐼𝑏𝑏,𝑥𝑥 is the sum of all pixel values 
of the object xth in 𝐼𝐼𝑏𝑏  

The unsure region is the boundary and small 
objects  (𝐵𝐵⋃𝑠𝑠𝐿𝐿), and the sure region is obtained using 
subtraction operations: 

∀(𝑖𝑖, 𝑗𝑗) ∈ { (𝑥𝑥,𝑦𝑦) | 𝐼𝐼(𝑥𝑥,𝑦𝑦) ∈ 𝐼𝐼 }, 

 𝑆𝑆𝑖𝑖,𝑗𝑗 = �
 0 | 𝐿𝐿𝑖𝑖,𝑗𝑗 > 0 𝑎𝑎𝑛𝑛𝑎𝑎 (𝐵𝐵 ⋃ 𝑠𝑠𝐿𝐿)𝑖𝑖,𝑗𝑗 > 0  
1 | 𝐿𝐿𝑖𝑖,𝑗𝑗 > 0 𝑎𝑎𝑛𝑛𝑎𝑎 (𝐵𝐵 ⋃ 𝑠𝑠𝐿𝐿)𝑖𝑖,𝑗𝑗 = 0 (3) 

An example of the sure objects obtained after 
using the proposed approach is shown in Figure 5, and 
the proposed sure region segmentation method is 
given by Algorithm 1. With the sure region segmented, 
the classification of the three desired tissues can be 
obtained from the CNN which can segment and 
classify three tissues. 



4 

Algorithm 1: Segmentation of sure 
region from a brain 2D MR image 

Input: 
I-the 2D MR image
th-contour thickness,default value=1
P-smallest object area, default
value=500
K-number of tissues, default value=3
convert2Binary()-Convert to binary
getBorderLabel()-Assign label to
border pixel in binary image
getSmallObjects()-Return small object
in binary image

Output: 
S: the sure region 

1. #using CNN to segment I for K
tissues 

L: Ω →{1,…,K} 
S: image size(I) with value=0 

2. for i ∈ {1,…,K} do:
3. #convert ith tissues image to
binary 

tmp=convert2Binary(L, i)
4. #get border ith tissues with
thickness=th and assign 

#label=K+1 
B= getBorderLabel(tmp, th, K+1) 

5. #get small objects from ith 
tissues with area < P and 

#assign label =K+2 
sL = getSmallObjects (tmp, P, 

K+2) 
6. #exclude border and small
objects 

tmp [B == (K+1)] = 0
tmp [sL == (K+2)] = 0
S[tmp==1]=1

7. return S;

2.2 Unsure region classification 

Deep learning has shown better results in 
image classification, object detection, and 
segmentation [24-26]. In this section, we propose 
using another CNN model to classify each pixel in 
the unsure region previously obtained. We define 
a local CNN as follows: 
• Input is the window containing pixel

prediction in the center
• CNN with multiple windows as input.
• Training only in the unsure region.

In this section, a CNN model with the
convolutions is computed between the input and 
filters, the activation function performs a non-linear 
transformation, max-pooling layer subsamples the 
output of the convolutional layer, fully connected 

layer is the last layer. The output of the last fully 
connected layer is activated by the soft-max layer to 
predict k labels. The example of a CNN model for 
unsure region classification in brain 3D MRI is 
shown in Figure 6. In Figure 6, four windows with 
size (69,69) as input are denoted 4@69x69. In the 
next down-sampling layer, 32 feature maps with 
size (67,67) are denoted 32@69x69. The last layer 
has 4 outputs as tissue labels.  

Fig. 6. The CNN model for unsure region 
classification in brain 3D MRI With 4 windows 

with size (69,69) as input. 

If Iz is the zth image, and U is the mask results 
of the unsure segmentation from the previous step, the 
𝑊𝑊𝑖𝑖,𝑗𝑗  input windows at position (i, j) is used to predict 
the label of each pixel as: 

∀(𝑖𝑖, 𝑗𝑗) ∈ { (𝑥𝑥,𝑦𝑦) | 𝑈𝑈(𝑥𝑥,𝑦𝑦) > 0 }, 
 𝑊𝑊𝑖𝑖,𝑗𝑗 = 𝐼𝐼[(𝑖𝑖 − 𝑎𝑎, 𝑗𝑗 − 𝑎𝑎);  (𝑖𝑖 + 𝑎𝑎, 𝑗𝑗 + 𝑎𝑎)] (4) 

where d is the half of the sliding window size. 

One of the problems related to the input windows 
𝑊𝑊 in an input image I is that it does not contain enough 
information to predict the label of a pixel, especially 
when a small sliding window is used. Therefore, 
instead of using one slice as an input image for sliding 
windows, we proposed using results from the sure 
region in n previous and next slices of the 3D MRI 
scan: 

∀(𝑖𝑖, 𝑗𝑗) ∈ { (𝑥𝑥,𝑦𝑦) | 𝑈𝑈(𝑥𝑥,𝑦𝑦) > 0 }, 

𝑊𝑊𝑖𝑖,𝑗𝑗 =

⎣
⎢
⎢
⎢
⎢
⎡𝑈𝑈𝑧𝑧−𝑛𝑛 [(𝑖𝑖 − 𝑎𝑎, 𝑗𝑗 − 𝑎𝑎);  (𝑖𝑖 + 𝑎𝑎, 𝑗𝑗 + 𝑎𝑎)]

… … … … . . .
𝑈𝑈𝑧𝑧     [(𝑖𝑖 − 𝑎𝑎, 𝑗𝑗 − 𝑎𝑎);  (𝑖𝑖 + 𝑎𝑎, 𝑗𝑗 + 𝑎𝑎)]… … … … … .
𝑈𝑈𝑧𝑧+𝑛𝑛 [(𝑖𝑖 − 𝑎𝑎, 𝑗𝑗 − 𝑎𝑎);  (𝑖𝑖 + 𝑎𝑎, 𝑗𝑗 + 𝑎𝑎)]
𝐼𝐼𝑧𝑧 [(𝑖𝑖 − 𝑎𝑎, 𝑗𝑗 − 𝑎𝑎);  (𝑖𝑖 + 𝑎𝑎, 𝑗𝑗 + 𝑎𝑎)] ⎦

⎥
⎥
⎥
⎥
⎤

 (5) 

3. EXPERIMENTS AND DISCUSSION

We evaluated the proposed method on the IBSR
18 image database [27], which contains real cases and 
has been used in many studies regarding tissue brain 
segmentation in MRI scans. The dataset is composed 
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of 18 T1-w scans with 1.5 mm of slice thickness. Each 
MRI has a size of 256x128x256. One of the most 
important characteristics of IBSR 18 is that it provides 
expert manually segmented results for comparison 
purposes. The ground truth volumes are divided into 
four different structures: non-brain, CSF, GM, and 
WM. Besides, we also compared the accuracy of the 
proposed method against state-of-the-art methods for 
brain tissue segmentation [28].  

We evaluated the performance of the proposed 
segmentation method using the Dice Similarity 
Coefficient [29]: 

𝑆𝑆 (𝑋𝑋,𝑌𝑌) = 2|𝑋𝑋∩𝑌𝑌|
|𝑋𝑋| + |𝑌𝑌|

, (6) 
where |X| and |Y| are the number of non-zero voxels in 
sets X and Y, and |X∩Y| is the number of non-zero 
voxels shared by the two sets, respectively. 

3.1 Comparison U-Net and Adaptive U-Net 

Each brain 3D MRI scan, which is a 3D image 
of size 256x128x256, was converted to 128 2D 
images, i.e. slices, with a dimension 256x256. The 
skull stripping masks were taken from the ground truth 
included in the dataset. We used Python for algorithm 
implementation and used the Keras library [30] for the 
two deep neural networks used: U-Net and Adaptive 
U-Net with input size of 256x256, ‘Adam’ optimizer
[31], and 'binary_crossentropy' loss [32]. Our tests
were conducted using a Windows 10 based PC, with
24GB of RAM, and a Geforce GTX980 graphics card.
The beginning number of a filter was 32. On the right
side of the model in Figure 8, an upsampling of the
feature map which is with a 2x2 convolution
concatenate with the correspondingly feature map
from the left side. At the final layer, a 1x1 convolution
is used with activation ‘sigmoid’ to get the number of
classes.

In the Adaptive U-Net model, we proposed 
using multiple kernel sizes to get the local and global 
features in each layer. We restricted our experiments 
with two kernel sizes: (3,3) and (5,5). The max-
pooling was defined with size (2,2). Besides, we used 
another method for down-sampling layers: 
convolution with stride (2,2). We run the method with 
epoch = 100 and use Model Check Point to obtain the 
best classification model. We run with 3-Fold 
Validation [33]. In the IBSR 18 dataset, the 18-person 
scans are numbered from 01 to 18. First, we train 12-
persons from number 01 to 12 (1536 2D slices with 
size 256x256). In the training step, we used 
validation_split=0.2 of the training sample for 
validation data. Then, we test 6-persons from 13 to 18 
(768 2D slices with size 256x256). Second, we train 
12-persons from 01 to 06, 13 to 18 (1536 2D slices
with size 256x256). In the training step, we used 

validation_split=0.2 of the training sample for 
validation data. Then, we test 6-persons from 07 to 12 
(768 2D slices with size 256x256). Third, 12-persons 
from 07 to 18 are used for training (1536 2D slices 
with size 256x256). In the training step, we used 
validation_split=0.2 of the training sample for 
validation data. Then, we test 6-persons from 01 to 06 
are used for testing (768 2D slices with size 256x256) 
Table 1 shows the summary of the Adaptive U-Net 
model for segmentation. 

Table 1. The summary of the Adaptive U-Net model 
for segmentation 

Layer (type) Output Shape       Param #     Connected to   
================================================================= 
input_2 (InputLayer) [(None, 256, 256, 1) 0  
_________________________________________________________________________ 
conv2d (Conv2D) (None, 256, 256, 32) 320 input_2[0][0]  
_________________________________________________________________________ 
conv2d_1 (Conv2D) (None, 256, 256, 32) 9248 conv2d[0][0]   
_________________________________________________________________________ 
max_pooling2d 
 (MaxPooling2D) (None, 128, 128, 32) 0 conv2d_1[0][0]   
_________________________________________________________________________ 
conv2d_2 (Conv2D)     (None, 128, 128, 32) 832 input_2[0][0]  
_________________________________________________________________________ 
concatenate_4 (Concatenate) (None, 128, 128, 64) 0 max_pooling2d[0][0]  

conv2d_2[0][0]   
_________________________________________________________________________ 
conv2d_3 (Conv2D)     (None, 128, 128, 64) 36928 concatenate_4[0][0]  
_________________________________________________________________________ 
conv2d_4 (Conv2D)     (None, 128, 128, 64) 36928 conv2d_3[0][0]   
_________________________________________________________________________ 
max_pooling2d_1  
(MaxPooling2D)  (None, 64, 64, 64)   0 conv2d_4[0][0]   
_________________________________________________________________________ 
conv2d_5 (Conv2D)     (None, 64, 64, 64)   102464 concatenate_4[0][0]  
_________________________________________________________________________ 
concatenate_5 (Concatenate) (None, 64, 64, 128)  0 max_pooling2d_1[0][0]  

conv2d_5[0][0]   
_________________________________________________________________________ 
conv2d_6 (Conv2D)     (None, 64, 64, 128)  147584 concatenate_5[0][0]  
_________________________________________________________________________ 
conv2d_7 (Conv2D) (None, 64, 64, 128)  147584 conv2d_6[0][0]   
________________________________________________________________________ 
max_pooling2d_2  
(MaxPooling2D) (None, 32, 32, 128)  0   conv2d_7[0][0]   
_________________________________________________________________________ 
conv2d_8 (Conv2D) (None, 32, 32, 128)  409728 concatenate_5[0][0]  
_________________________________________________________________________ 
concatenate_6 (Concatenate) (None, 32, 32, 256)  0 max_pooling2d_2[0][0]  

conv2d_8[0][0]   
_________________________________________________________________________ 
conv2d_9 (Conv2D)     (None, 32, 32, 256)  590080 concatenate_6[0][0]  
_________________________________________________________________________ 
conv2d_10 (Conv2D) (None, 32, 32, 256)  590080 conv2d_9[0][0]   
_________________________________________________________________________ 
max_pooling2d_3  
(MaxPooling2D)  (None, 16, 16, 256)  0 conv2d_10[0][0]  
_________________________________________________________________________ 
conv2d_11 (Conv2D) (None, 16, 16, 256)  1638656 concatenate_6[0][0]    
_________________________________________________________________________ 
concatenate_7 (Concatenate) (None, 16, 16, 512)  0   max_pooling2d_3[0][0]  

conv2d_11[0][0]  
_________________________________________________________________________ 
conv2d_12 (Conv2D) (None, 16, 16, 512)  2359808 concatenate_7[0][0]  
_________________________________________________________________________ 
conv2d_13 (Conv2D) (None, 16, 16, 512)  2359808 conv2d_12[0][0]  
_________________________________________________________________________ 
conv2d_transpose  
(Conv2DTranspo (None, 32, 32, 256)  524544 conv2d_13[0][0]  
_________________________________________________________________________ 
concatenate_8 (Concatenate) (None, 32, 32, 512)  0  conv2d_transpose[0][0]   

conv2d_10[0][0]  
_________________________________________________________________________ 
conv2d_14 (Conv2D) (None, 32, 32, 256)  1179904 concatenate_8[0][0]  
_________________________________________________________________________ 
conv2d_15 (Conv2D) (None, 32, 32, 256)  590080 conv2d_14[0][0]  
_________________________________________________________________________ 
conv2d_transpose_1  
(Conv2DTrans  (None, 64, 64, 128)  131200 conv2d_15[0][0]  
_________________________________________________________________________ 
concatenate_9 (Concatenate) (None, 64, 64, 256)  0 conv2d_transpose_1[0][0]   

conv2d_7[0][0]   
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_________________________________________________________________________ 
conv2d_16 (Conv2D) (None, 64, 64, 128)  295040 concatenate_9[0][0]  
_________________________________________________________________________ 
conv2d_17 (Conv2D) (None, 64, 64, 128)  147584 conv2d_16[0][0]  
_________________________________________________________________________ 
conv2d_transpose_2  
(Conv2DTrans  (None, 128, 128, 64) 32832 conv2d_17[0][0]  
_________________________________________________________________________ 
concatenate_10 conv2d_transpose_2[0][0] 
(Concatenate) (None, 128, 128, 128 0     conv2d_4[0][0]  
_________________________________________________________________________ 
conv2d_18 (Conv2D) (None, 128, 128, 64) 73792   concatenate_10[0][0]   
_________________________________________________________________________ 
conv2d_19 (Conv2D) (None, 128, 128, 64) 36928   conv2d_18[0][0]   
_________________________________________________________________________ 
conv2d_transpose_3  
(Conv2DTrans  (None, 256, 256, 32) 8224 conv2d_19[0][0]  
_________________________________________________________________________ 
concatenate_11 conv2d_transpose_3[0][0] 
(Concatenate)  (None, 256, 256, 64) 0 conv2d_1[0][0]   
_________________________________________________________________________ 
conv2d_20 (Conv2D) (None, 256, 256, 32) 18464 concatenate_11[0][0]   
_________________________________________________________________________ 
conv2d_21 (Conv2D) (None, 256, 256, 32) 9248 conv2d_20[0][0]  
_________________________________________________________________________ 
conv2d_22 (Conv2D) (None, 256, 256, 3)  99     conv2d_21[0][0]  
================================================================= 
Total params: 11,477,987 
Trainable params: 11,477,987 
Non-trainable params: 0 

Segmentation results obtained using U-Net 
and Adaptive U-Net models in terms of the Dice 
coefficient presented in Table 2 (mean ± standard 
deviation). In many models, choosing the kernel size 
(3x3), or (5x5), or (7x7) depends on the problem. 
Here, we proposed using two popular kernel sizes 
(3x3) and (5x5). The Concatenation of the output 
feature maps is the most common one that can give 
more useful features. In comparison, the Dice 
coefficient for all tissues segmentation obtained using 
Adaptive U-Net is better than the one obtained using 
U-Net. The standard deviation of all tissue
segmentation is also better for Adaptive U-Net.

Table 2. Segmentation results obtained using U-Net 
and Adaptive U-Net models in terms of Dice 

coefficient (mean ± standard deviation) 
Model / 
Tissue 

Train 1 
 01→12 

Train 2 
01→06, 
13→18 

Train 3 
07→18 

Average 
Test 1 

13→18 
Test 2 

07→12 
Test 3 

01→06 
U-Net WM 0.92 ± 0.02 0.93 ± 0.02 0.92 ± 0.01 0.92 ± 0.02 

GM 0.94 ± 0.01 0.88 ± 0.02 0.93 ± 0.03 0.92 ± 0.03 
CSF 0.80 ± 0.04 0.70 ± 0.04 0.81 ± 0.06 0.77 ± 0.06 

Adaptive  
U-Net

WM 0.92 ± 0.02 0.93 ± 0.02 0.92 ± 0.01 0.92 ± 0.01 
GM 0.94 ± 0.01 0.88 ± 0.01 0.93 ± 0.02 0.92 ± 0.02 
CSF 0.81 ± 0.03 0.71 ± 0.02 0.82 ± 0.05 0.78 ± 0.05 

3.2 Comparison of the proposed method with others 
After using Adaptive U-Net for three brain tissue 

segmentation, we applied the proposed method to 
segment the sure and unsure regions. The unsure 
region is classified by using CNN for pixel prediction 
with 17 layers. The input image slices for 
segmentation were an original image, and the sure 
segmentation from the original image, previous and 
next images. The sliding window size was 69. The 
optimizer was ‘Adam’ and the loss was 

'categorical_crossentropy'. In module Border 
Detection, the border thickness was 1 (one) and in 
Small Object Detection, the maximum area of small 
objects was 800 pixels. We run 100 epochs and used 
model checkpoint to train data. We implement the 
method on all the pixels in the unsure region and detect 
that the pixels on the boundary between GM and CSF 
tissues are classified better 

An example of using an original slice combined 
with the information of two neighbor slices is shown 
in Figure 7. For each slice, the sure region is 
segmented first, then the sure region is also calculated 
in the previous and next slices. The combination of the 
three sure region segmentation and the original image 
is used as input for the CNN prediction. 

Fig. 7. Sliding windows with four inputs (Original 
Slice, Previous Slice Sure Segmentation, Slice Sure 
Segmentation, and Next Slice Sure Segmentation) 
for pixel classification in the Unsure Region from 

slice 96 Person 1 dataset IBSR 18. 
Table 3 presents the segmentation results obtained 

using the proposed method on the IBSR 18 dataset. 
From the segmentation results, one can realize that the 
Dice coefficient for CSF segmentation and standard 
deviation for WM segmentation is better because 
many features from the sure region are extracted from 
the input. Figure 8 shows the 30th slice when testing 
IBSR_08, GM region was extracted using U-Net and 
compared with the ground truth.  

Table 3. Segmentation results using the proposed 
method on the IBSR 18 dataset 

Tissue 

Train 1 
01→12 

Train 2 
01→06, 
13→18 

Train 3 
07→18 

Average 
Test 1 
13→18 

Test 2 
07→12 

Test 3 
01→06 

WM 0.92 ± 0.01 0.91 ± 0.01 0.92 ± 0.01 0.92 ± 0.01 
GM 0.94 ± 0.01 0.90 ± 0.01 0.93 ± 0.01 0.92 ± 0.01 
CSF 0.81 ± 0.03 0.77 ± 0.01 0.82 ± 0.04 0.80 ± 0.04 
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Fig. 8. An example of the results obtained by the 

proposed method and U-Net for GM segmentation. 
From the left to right are the 30th slice in testing 

IBSR_08, the zoom result from our proposed method 
vs. ground truth. White is the overlapped, blue is the 
ground truth and purple is the result of our proposed 

method. 
 

The comparison with the state of art segmentation 
methods [21] is presented in Table 4. From the 
comparison results, one can conclude that the deep 
learning-based approach obtained prominent 
segmentations in the used dataset.  

As to the WM segmentation, the accuracies of the 
proposed method and U-Net were not better than 
methods modified directly in the convolution of U-Net 
such as B-UNet (0.92). With our method, we can 
classify each pixel in the boundary. However, the 
feature only extracts from the windows input size 
(69x69) while with B-UNet, the implementation of 
Bit-plane in Convolution generates more features than 
our method. But the drawback of that method is that 
the feature is useful or not depending on the dataset. 

As to the GM segmentation, the Dice coefficient 
for the proposed method (0.92) was the same as the 
ones of the other methods because the sliding window 
did not give more features to classify the wrong voxels 
in the GM border. CSF segmentation accuracy was 
better for the proposed method than for the other 
methods. This finding was because the module Border 
Detection and Small Object Detection detected most 
of the wrong voxels correctly, which were on the 
border between GM and CSF tissues. Besides, the CSF 
region is small and sliding windows size (69x69) can 
give more useful features. The standard deviation for 
all tissue segmentation obtained using the proposed 
methods was also better than the ones obtained by the 
other methods. 

 
Table 4. Results of the comparison of the proposed 

method against other methods 
 WM GM CSF Average 
Proposed method 0.92 ± 0.01 0.92 ± 0.01 0.80 ± 0.04 0.88 
B-UNet[34] 0.93 0.92 0.78 0.88 
Adaptive U-Net 0.92 ± 0.01 0.92 ± 0.02 0.78 ± 0.05 0.87 
U-Net 0.92 ± 0.02 0.92 ± 0.03 0.77 ± 0.06 0.87 
CNN-GMM [15] 0.90 ± 0.01 0.91 ± 0.03 0.79 ± 0.03 0.86 

State of art [28]: 
- FAST 
- SPM5 
- SPM8 
- GAMIXTURE 
- ANN 
- FCM 
- KNN 
- SVPASEG 
- FANTASM 
- PVC 

0.89 ± 0.02 
0.89 ± 0.02 
0.87 ± 0.02 
0.88 ± 0.01 
0.87 ± 0.02 
0.88 ± 0.03 
0.88 ± 0.03 
0.86 ± 0.03 
0.87 ± 0.02 
0.88 ± 0.03 
0.84 ± 0.07 

0.91 ± 0.01 
0.88 ± 0.01 
0.89 ± 0.02 
0.91 ± 0.01 
0.89 ± 0.03 
0.87 ± 0.03 
0.88 ± 0.02 
0.87 ± 0.03 
0.90 ± 0.01 
0.88 ± 0.02 
0.83 ± 0.08 

0.79 ± 0.08 
0.47 ± 0.18 
0.79 ± 0.08 
0.77 ± 0.08 
0.52 ± 0.15 
0.52 ± 0.15 
0.52 ± 0.15 
0.46 ± 0.16 
0.57 ± 0.13 
0.53 ± 0.15 
0.52 ± 0.15 

0.86 

4. CONCLUSION 
 

In this article, we proposed an efficient approach 
to segment brain tissues in 3D MRI. We use an 
adaptive model based on the U-Net model to segment 
three tissues from brain images. It is followed by an 
Unsure Region Detection module to segment the sure 
and unsure regions. After that, another CNN is used to 
classify each pixel in the unsure region. The input for 
this CNN model is an original image, and sure 
segmentation from the original image, previous and 
next images. The main contributions are using 
Adaptive U-Net and using local CNN in unsure region. 

The proposed method obtained better results 
because the original image combined with feature 
maps from the autoencoder model is used as input for 
the second CNN model to classify each pixel in the 
unsure region. In this study, the border detection can 
obtain incorrect pixels, and the CNN is affected by the 
size of used sliding windows. However, if we detect 
the unsure region better by using a suitable threshold 
in the last layer of U-Net, we can improve the 
segmentation result. 
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