883 research outputs found

    Percutaneous treatment of native aortic coarctation in adults

    Get PDF
    Aortic coarctation is a common congenital cardiac defect, which can be diagnosed over a wide range of ages and with varying degrees of severity. We present two cases of patients diagnosed with aortic coarctation in adulthood. Both patients were treated by an endovascular approach. These cases demonstrate the variety of indications in which percutaneous treatment is an excellent alternative for surgical treatment in adult native coarctation patients

    Learners Self-directing Learning in FutureLearn MOOCs: A Learner-Centered Study

    Get PDF
    This qualitative research study focuses on how experienced online learners self-direct their learning while engaging in a MOOC delivered on the FutureLearn platform. Self-directed learning is an important concept within informal learning and online learning. This study distinguishes itself from previous MOOC learner studies, by reporting the self-directed learning using a bottom-up approach. By looking at self-reported learning logs and interview transcripts an in-depth analysis of the self-directed learning is achieved. The data analysis used constructed grounded theory, which aligns with the bottom-up approach where the learner data is coded and investigated in an open, yet evidence-based way, leaving room for insights to emerge from the learner data. The data corpus is based on 56 participants following three FutureLearn MOOCs, providing 147 learning logs and 19 semi-structured one-on-one interviews with a selection of participants. The results show five specific areas in which learners react with either the material or other learners to self-direct their learning: context, individual or social learning, technology and media provided in the MOOCs, learner characteristics and organising learning. This study also indicates how intrinsic motivation and personal learning goals are the main inhibitors or enablers of self-directed learning

    Interactive Effects of Time, CO\u3csub\u3e2\u3c/sub\u3e, N, and Diversity on Total Belowground Carbon Allocation and Ecosystem Carbon Storage in a Grassland Community

    Get PDF
    Predicting if ecosystems will mitigate or exacerbate rising CO2 requires understanding how elevated CO2 will interact with coincident changes in diversity and nitrogen (N) availability to affect ecosystem carbon (C) storage. Yet achieving such understanding has been hampered by the difficulty of quantifying belowground C pools and fluxes. Thus, we used mass balance calculations to quantify the effects of diversity, CO2, and N on both the total amount of C allocated belowground by plants (total belowground C allocation, TBCA) and ecosystem C storage in a periodically burned, 8-year Minnesota grassland biodiversity, CO2, and N experiment (BioCON). Annual TBCA increased in response to elevated CO2, enriched N, and increasing diversity. TBCA was positively related to standing root biomass. After removing the influence of root biomass, the effect of elevated CO2 remained positive, suggesting additional drivers of TBCA apart from those that maintain high root biomass. Removing root biomass effects resulted in the effects of N and diversity becoming neutral or negative (depending on year), suggesting that the positive effects of diversity and N on TBCA were related to treatmentdriven differences in root biomass. Greater litter production in high diversity, elevated CO2, and enhanced N treatments increased annual ecosystem C loss in fire years and C gain in non-fire years, resulting in overall neutral C storage rates. Our results suggest that frequently burned grasslands are unlikely to exhibit enhanced C sequestration with increasing atmospheric CO2 levels or N deposition

    Carbon cycling and budget in a forested basin of southwestern Hokkaido, northern Japan

    Get PDF
    Quantification of annual carbon sequestration is very important in order to assess the function of forest ecosystems in combatting global climate change and the ecosystem responses to those changes. Annual cycling and budget of carbon in a forested basin was investigated to quantify the carbon sequestration of a cool-temperate deciduous forest ecosystem in the Horonai stream basin, Tomakomai Experimental Forest, northern Japan. Net ecosystem exchange, soil respiration, biomass increment, litterfall, soil-solution chemistry, and stream export were observed in the basin from 1999–2001 as a part of IGBP-TEMA project. We found that 258 g C m–2 year–1 was sequestered annually as net ecosystem exchange (NEE) in the forested basin. Discharge of carbon to the stream was 4 g C m–2 year–1 (about 2% of NEE) and consisted mainly of dissolved inorganic carbon (DIC). About 43% of net ecosystem productivity (NEP) was retained in the vegetation, while about 57% of NEP was sequestered in soil, suggesting that the movement of sequestered carbon from aboveground to belowground vegetation was an important process for net carbon accumulation in soil. The derived organic carbon from aboveground vegetation that moved to the soil mainly accumulated in the solid phase of the soil, with the result that the export of dissolved organic carbon to the stream was smaller than that of dissolved inorganic carbon. Our results indicated that the aboveground and belowground interaction of carbon fluxes was an important process for determining the rate and retention time of the carbon sequestration in a cool-temperate deciduous forest ecosystem in the southwestern part of Hokkaido, northern Japan

    Monitoring the EU protected Geomalacus maculosus (Kerry Slug): what are the factors affecting catch returns in open and forested habitats?

    Get PDF
    Geomalacus maculosus is a slug species protected under EU law with a distribution limited to the west of Ireland and north-west Iberia. The species, originally thought to be limited within Ireland to deciduous woodland and peatland, has been found in a number of commercial conifer plantations since 2010. While forest managers are now required to incorporate the protection of the species where it is present, no clear species monitoring protocols are currently available. This study examines the efficacy of De Sangosse refuge traps across three habitats frequently associated with commercial forest plantations in Ireland and compares them with hand searching, a commonly used method for slug monitoring. Catch data during different seasons and under different weather conditions are also presented. Results indicate that autumn is the optimal time for sampling G. maculosus but avoiding extremes of hot or cold weather. While refuge traps placed at 1.5 m on trees in mature conifer plantations and directly on exposed rock in blanket peatlands result in significantly greater catches, hand searching is the most successful approach for clear-fell areas. Hand searches in clear-fell preceded by rain are likely to result in greater numbers caught. The results of this study form, for the first time, the basis for G. maculosus monitoring guidelines for forestry managers. © 2016, The Ecological Society of Japa

    Increased Litterfall in Tropical Forests Boosts the Transfer of Soil CO2 to the Atmosphere

    Get PDF
    Aboveground litter production in forests is likely to increase as a consequence of elevated atmospheric carbon dioxide (CO2) concentrations, rising temperatures, and shifting rainfall patterns. As litterfall represents a major flux of carbon from vegetation to soil, changes in litter inputs are likely to have wide-reaching consequences for soil carbon dynamics. Such disturbances to the carbon balance may be particularly important in the tropics because tropical forests store almost 30% of the global soil carbon, making them a critical component of the global carbon cycle; nevertheless, the effects of increasing aboveground litter production on belowground carbon dynamics are poorly understood. We used long-term, large-scale monthly litter removal and addition treatments in a lowland tropical forest to assess the consequences of increased litterfall on belowground CO2 production. Over the second to the fifth year of treatments, litter addition increased soil respiration more than litter removal decreased it; soil respiration was on average 20% lower in the litter removal and 43% higher in the litter addition treatment compared to the controls but litter addition did not change microbial biomass. We predicted a 9% increase in soil respiration in the litter addition plots, based on the 20% decrease in the litter removal plots and an 11% reduction due to lower fine root biomass in the litter addition plots. The 43% measured increase in soil respiration was therefore 34% higher than predicted and it is possible that this ‘extra’ CO2 was a result of priming effects, i.e. stimulation of the decomposition of older soil organic matter by the addition of fresh organic matter. Our results show that increases in aboveground litter production as a result of global change have the potential to cause considerable losses of soil carbon to the atmosphere in tropical forests

    Generating political commitment for ending malnutrition in all its forms: A system dynamics approach for strengthening nutrition actor networks.

    Get PDF
    Generating political commitment for ending all forms of malnutrition represents a key challenge for the global nutrition community. Without commitment, the policies, programs, and resources needed to improve nutrition are unlikely to be adopted, effectively implemented, nor sustained. One essential driver of commitment is nutrition actor network (NAN) effectiveness, the web of individuals and organizations operating within a given country who share a common interest in improving nutrition and who act collectively to do so. To inform new thinking and action towards strengthening NAN effectiveness, we use a systems dynamics theoretical approach and literature review to build initial causal loop diagrams (CLDs) of political commitment and NAN effectiveness and a qualitative group model building (GMB) method involving an expert workshop to strengthen model validity. First, a "nutrition commitment system" CLD demonstrates how five interrelated forms of commitment-rhetorical, institutional, operational, embedded, and system-wide-can dynamically reinforce or diminish one another over time. Second, we present CLDs demonstrating factors shaping NAN effectiveness organized into three categories: actor features, resources, and capacities; framing strategies, evidence, and norms; and institutional, political, and societal contexts. Together, these models generate hypotheses on how political commitment and NAN effectiveness could be strengthened in future and may provide potential starting points for country-specific conversations for doing so
    corecore