218 research outputs found

    Vitamin D Status and its Association with Morbidity including Wasting and Opportunistic Illnesses in HIV-Infected Women in Tanzania.

    Get PDF
    Vitamin D has a potential role in preventing HIV-related complications, based on its extensive involvement in immune and metabolic function, including preventing osteoporosis and premature cardiovascular disease. However, this association has not been examined in large studies or in resource-limited settings. Vitamin D levels were assessed in 884 HIV-infected pregnant women at enrollment in a trial of multivitamin supplementation (excluding vitamin D) in Tanzania. Information on HIV related complications was recorded during follow-up (median, 70 months). Proportional hazards models and generalized estimating equations were used to assess the relationship of vitamin D status with these outcomes. Women with low vitamin D status (serum 25-hydroxyvitamin D<32 ng/mL) had 43% higher risk of reaching a body mass index (BMI) less than 18 kg/m(2) during the first 2 years of follow-up, compared to women with adequate vitamin D levels (hazard ratio [HR]: 1.43; 95% confidence intervals: [1.03-1.99]). The relationship between continuous vitamin D levels and risk of BMI less than 18 kg/m(2) during follow-up was inverse and linear (p=0.03). Women with low vitamin D levels had significantly higher incidence of acute upper respiratory infections (HR: 1.27 [1.04-1.54]) and thrush (HR: 2.74 [1.29-5.83]) diagnosed during the first 2 years of follow-up. Low vitamin D status was a significant risk factor for wasting and HIV-related complications such as thrush during follow-up in this prospective cohort in Tanzania. If these protective associations are confirmed in randomized trials, vitamin D supplementation could represent a simple and inexpensive method to improve health and quality of life of HIV-infected patients, particularly in resource-limited settings

    Modelling informative time points: an evolutionary process approach

    Get PDF
    Real time series sometimes exhibit various types of "irregularities": missing observations, observations collected not regularly over time for practical reasons, observation times driven by the series itself, or outlying observations. However, the vast majority of methods of time series analysis are designed for regular time series only. A particular case of irregularly spaced time series is that in which the sampling procedure over time depends also on the observed values. In such situations, there is stochastic dependence between the process being modelled and the times of the observations. In this work, we propose a model in which the sampling design depends on all past history of the observed processes. Taking into account the natural temporal order underlying available data represented by a time series, then a modelling approach based on evolutionary processes seems a natural choice. We consider maximum likelihood estimation of the model parameters. Numerical studies with simulated and real data sets are performed to illustrate the benefits of this model-based approach.- The authors acknowledge Foundation FCT (FundacAo para a Ciencia e Tecnologia) as members of the research project PTDC/MAT-STA/28243/2017 and Center for Research & Development in Mathematics and Applications of Aveiro University within project UID/MAT/04106/2019

    Live to cheat another day: bacterial dormancy facilitates the social exploitation of beta-lactamases

    Get PDF
    The breakdown of antibiotics by β-lactamases may be cooperative, since resistant cells can detoxify their environment and facilitate the growth of susceptible neighbours. However, previous studies of this phenomenon have used artificial bacterial vectors or engineered bacteria to increase the secretion of β-lactamases from cells. Here, we investigated whether a broad-spectrum β-lactamase gene carried by a naturally occurring plasmid (pCT) is cooperative under a range of conditions. In ordinary batch culture on solid media, there was little or no evidence that resistant bacteria could protect susceptible cells from ampicillin, although resistant colonies could locally detoxify this growth medium. However, when susceptible cells were inoculated at high densities, late-appearing phenotypically susceptible bacteria grew in the vicinity of resistant colonies. We infer that persisters, cells that have survived antibiotics by undergoing a period of dormancy, founded these satellite colonies. The number of persister colonies was positively correlated with the density of resistant colonies and increased as antibiotic concentrations decreased. We argue that detoxification can be cooperative under a limited range of conditions: if the toxins are bacteriostatic rather than bacteridical; or if susceptible cells invade communities after resistant bacteria; or if dormancy allows susceptible cells to avoid bactericides. Resistance and tolerance were previously thought to be independent solutions for surviving antibiotics. Here, we show that these are interacting strategies: the presence of bacteria adopting one solution can have substantial effects on the fitness of their neighbours

    Structural basis for native agonist and synthetic inhibitor recognition by the Pseudomonas aeruginosa quorum sensing regulator PqsR (MvfR)

    Get PDF
    Bacterial populations co-ordinate gene expression collectively through quorum sensing (QS), a cell-to-cell communication mechanism employing diffusible signal molecules. The LysR-type transcriptional regulator (LTTR) protein PqsR (MvfR) is a key component of alkyl-quinolone (AQ)-dependent QS in Pseudomonas aeruginosa. PqsR is activated by 2-alkyl-4-quinolones including the Pseudomonas quinolone signal (PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone), its precursor 2-heptyl-4- hydroxyquinoline (HHQ) and their C9 congeners, 2-nonyl-3-hydroxy-4(1H)-quinolone (C9-PQS) and 2-nonyl-4-hydroxyquinoline (NHQ). These drive the autoinduction of AQ biosynthesis and the up-regulation of key virulence determinants as a function of bacterial population density. Consequently, PqsR constitutes a potential target for novel antibacterial agents which attenuate infection through the blockade of virulence. Here we present the crystal structures of the PqsR co-inducer binding domain (CBD) and a complex with the native agonist NHQ. We show that the structure of the PqsR CBD has an unusually large ligand-binding pocket in which a native AQ agonist is stabilized entirely by hydrophobic interactions. Through a ligand-based design strategy we synthesized and evaluated a series of 50 AQ and novel quinazolinone (QZN) analogues and measured the impact on AQ biosynthesis, virulence gene expression and biofilm development. The simple exchange of two isosteres (OH for NH2) switches a QZN agonist to an antagonist with a concomitant impact on the induction of bacterial virulence factor production. We also determined the complex crystal structure of a QZN antagonist bound to PqsR revealing a similar orientation in the ligand binding pocket to the native agonist NHQ. This structure represents the first description of an LTTR-antagonist complex. Overall these studies present novel insights into LTTR ligand binding and ligand-based drug design and provide a chemical scaffold for further anti-P. aeruginosa virulence drug development by targeting the AQ receptor PqsR

    Gene expression in fungi

    Get PDF
    This contribution is based on the four presentations made at the Special Interest Group (SIG) meeting titled Gene Expression in Fungi held during IMC9 in Edinburgh. This overview is independent from other articles published or that will be published by each speaker. In the SIG meeting, basic principles of in vivo animal models for virulence studies were discussed. Infection associated genes of Candida albicans and fungal adaptation to the host was summarized. Azole susceptibility was evaluated as a combined result of several changes in expression of pertinent genes. Gene transfer in fungi, resulting in fungal evolution and gene adaptation to environmental factors, was reported

    Anodization of nanoporous alumina on impurity-induced hemisphere curved surface of aluminum at room temperature

    Get PDF
    Nanoporous alumina which was produced by a conventional direct current anodization [DCA] process at low temperatures has received much attention in various applications such as nanomaterial synthesis, sensors, and photonics. In this article, we employed a newly developed hybrid pulse anodization [HPA] method to fabricate the nanoporous alumina on a flat and curved surface of an aluminum [Al] foil at room temperature [RT]. We fabricate the nanopores to grow on a hemisphere curved surface and characterize their behavior along the normal vectors of the hemisphere curve. In a conventional DCA approach, the structures of branched nanopores were grown on a photolithography-and-etched low-curvature curved surface with large interpore distances. However, a high-curvature hemisphere curved surface can be obtained by the HPA technique. Such a curved surface by HPA is intrinsically induced by the high-resistivity impurities in the aluminum foil and leads to branching and bending of nanopore growth via the electric field mechanism rather than the interpore distance in conventional approaches. It is noted that by the HPA technique, the Joule heat during the RT process has been significantly suppressed globally on the material, and nanopores have been grown along the normal vectors of a hemisphere curve. The curvature is much larger than that in other literatures due to different fabrication methods. In theory, the number of nanopores on the hemisphere surface is two times of the conventional flat plane, which is potentially useful for photocatalyst or other applications

    A Cell-Based Model for Quorum Sensing in Heterogeneous Bacterial Colonies

    Get PDF
    Although bacteria are unicellular organisms, they have the ability to act in concert by synthesizing and detecting small diffusing autoinducer molecules. The phenomenon, known as quorum sensing, has mainly been proposed to serve as a means for cell-density measurement. Here, we use a cell-based model of growing bacterial microcolonies to investigate a quorum-sensing mechanism at a single cell level. We show that the model indeed predicts a density-dependent behavior, highly dependent on local cell-clustering and the geometry of the space where the colony is evolving. We analyze the molecular network with two positive feedback loops to find the multistability regions and show how the quorum-sensing mechanism depends on different model parameters. Specifically, we show that the switching capability of the network leads to more constraints on parameters in a natural environment where the bacteria themselves produce autoinducer than compared to situations where autoinducer is introduced externally. The cell-based model also allows us to investigate mixed populations, where non-producing cheater cells are shown to have a fitness advantage, but still cannot completely outcompete producer cells. Simulations, therefore, are able to predict the relative fitness of cheater cells from experiments and can also display and account for the paradoxical phenomenon seen in experiments; even though the cheater cells have a fitness advantage in each of the investigated groups, the overall effect is an increase in the fraction of producer cells. The cell-based type of model presented here together with high-resolution experiments will play an integral role in a more explicit and precise comparison of models and experiments, addressing quorum sensing at a cellular resolution

    The global distribution of the Duffy blood group

    Get PDF
    Blood group variants are characteristic of population groups, and can show conspicuous geographic patterns. Interest in the global prevalence of the Duffy blood group variants is multidisciplinary, but of particular importance to malariologists due to the resistance generally conferred by the Duffy-negative phenotype against Plasmodium vivax infection. Here we collate an extensive geo-database of surveys, forming the evidence-base for a multi-locus Bayesian geostatistical model to generate global frequency maps of the common Duffy alleles to refine the global cartography of the common Duffy variants. We show that the most prevalent allele globally was FY*A, while across sub-Saharan Africa the predominant allele was the silent FY*BES variant, commonly reaching fixation across stretches of the continent. The maps presented not only represent the first spatially and genetically comprehensive description of variation at this locus, but also constitute an advance towards understanding the transmission patterns of the neglected P. vivax malaria parasite

    Quorum Sensing Influences Vibrio harveyi Growth Rates in a Manner Not Fully Accounted For by the Marker Effect of Bioluminescence

    Get PDF
    The light-emitting Vibrios provide excellent material for studying the interaction of cellular communication with growth rate because bioluminescence is a convenient marker for quorum sensing. However, the use of bioluminescence as a marker is complicated because bioluminescence itself may affect growth rate, e.g. by diverting energy. quorum mutants. growth rate can be either positive or negative and includes both bioluminescence-dependent and independent components. Bioluminescence tends to slow growth rate but not enough to account for the effects of quorum sensing on growth rate
    corecore