239 research outputs found

    Cannabinoid Receptor 2 Signaling Does Not Modulate Atherogenesis in Mice

    Get PDF
    BACKGROUND:Strong evidence supports a protective role of the cannabinoid receptor 2 (CB(2)) in inflammation and atherosclerosis. However, direct proof of its involvement in lesion formation is lacking. Therefore, the present study aimed to characterize the role of the CB(2) receptor in Murine atherogenesis. METHODS AND FINDINGS:Low density lipoprotein receptor-deficient (LDLR(-/-)) mice subjected to intraperitoneal injections of the selective CB(2) receptor agonist JWH-133 or vehicle three times per week consumed high cholesterol diet (HCD) for 16 weeks. Surprisingly, intimal lesion size did not differ between both groups in sections of the aortic roots and arches, suggesting that CB(2) activation does not modulate atherogenesis in vivo. Plaque content of lipids, macrophages, smooth muscle cells, T cells, and collagen were also similar between both groups. Moreover, CB(2) (-/-)/LDLR(-/-) mice developed lesions of similar size containing more macrophages and lipids but similar amounts of smooth muscle cells and collagen fibers compared with CB(2) (+/+)/LDLR(-/-) controls. While JWH-133 treatment reduced intraperitoneal macrophage accumulation in thioglycollate-elicited peritonitis, neither genetic deficiency nor pharmacologic activation of the CB(2) receptor altered inflammatory cytokine expression in vivo or inflammatory cell adhesion in the flow chamber in vitro. CONCLUSION:Our study demonstrates that both activation and deletion of the CB(2) receptor do not relevantly modulate atherogenesis in mice. Our data do not challenge the multiple reports involving CB(2) in other inflammatory processes. However, in the context of atherosclerosis, CB(2) does not appear to be a suitable therapeutic target for reduction of the atherosclerotic plaque

    Extremely short duration interval exercise improves 24-h glycaemia in men with type 2 diabetes

    Get PDF
    PurposeReduced-exertion high-intensity interval training (REHIT) is a genuinely time-efficient exercise intervention that improves aerobic capacity and blood pressure in men with type 2 diabetes. However, the acute effects of REHIT on 24-h glycaemia have not been examined.Methods11 men with type 2 diabetes (mean ± SD: age, 52 ± 6 years; BMI, 29.7 ± 3.1 kg/m2; HbA1c, 7.0 ± 0.8%) participated in a randomised, four-trial crossover study, with continual interstitial glucose measurements captured during a 24-h dietary-standardised period following either (1) no exercise (CON); (2) 30 min of continuous exercise (MICT); (3) 10 × 1 min at ~ 90 HRmax (HIIT; time commitment, ~ 25 min); and (4) 2 × 20 s ‘all-out’ sprints (REHIT; time commitment, 10 min).ResultsCompared to CON, mean 24-h glucose was lower following REHIT (mean ± 95%CI: − 0.58 ± 0.41 mmol/L, p = 0.008, d = 0.55) and tended to be lower with MICT (− 0.37 ± 0.41 mmol/L, p = 0.08, d = 0.35), but was not significantly altered following HIIT (− 0.37 ± 0.59 mmol/L, p = 0.31, d = 0.35). This seemed to be largely driven by a lower glycaemic response (area under the curve) to dinner following both REHIT and MICT (− 11%, p  0.9 for both) but not HIIT (− 4%, p = 0.22, d = 0.38). Time in hyperglycaemia appeared to be reduced with all three exercise conditions compared with CON (REHIT: − 112 ± 63 min, p = 0.002, d = 0.50; MICT: -115 ± 127 min, p = 0.08, d = 0.50; HIIT − 125 ± 122 min, p = 0.04, d = 0.54), whilst indices of glycaemic variability were not significantly altered.ConclusionREHIT may offer a genuinely time-efficient exercise option for improving 24-h glycaemia in men with type 2 diabetes and warrants further study

    Managing sedentary behavior to reduce the risk of diabetes and cardiovascular disease

    Get PDF
    Modern human environments are vastly different from those of our forebears. Rapidly advancing technology in transportation, communications, workplaces, and home entertainment confer a wealth of benefits, but increasingly come with costs to human health. Sedentary behavior—too much sitting as distinct from too little physical activity—contributes adversely to cardiometabolic health outcomes and premature mortality. Findings from observational epidemiology have been synthesized in meta-analyses, and evidence is now shifting into the realm of experimental trials with the aim of identifying novel mechanisms and potential causal relationships. We discuss recent observational and experimental evidence that makes a compelling case for reducing and breaking up prolonged sitting time in both the primary prevention and disease management contexts. We also highlight future research needs, the opportunities for developing targeted interventions, and the potential of population-wide initiatives designed to address too much sitting as a health risk

    Measurement of the branching fraction for BD0KB^- \to D^0 K^{*-}

    Get PDF
    We present a measurement of the branching fraction for the decay B- --> D0 K*- using a sample of approximately 86 million BBbar pairs collected by the BaBar detector from e+e- collisions near the Y(4S) resonance. The D0 is detected through its decays to K- pi+, K- pi+ pi0 and K- pi+ pi- pi+, and the K*- through its decay to K0S pi-. We measure the branching fraction to be B.F.(B- --> D0 K*-)= (6.3 +/- 0.7(stat.) +/- 0.5(syst.)) x 10^{-4}

    Observation of a significant excess of π0π0\pi^{0}\pi^{0} events in B meson decays

    Get PDF
    We present an observation of the decay B0π0π0B^{0} \to \pi^{0} \pi^{0} based on a sample of 124 million BBˉB\bar{B} pairs recorded by the BABAR detector at the PEP-II asymmetric-energy BB Factory at SLAC. We observe 46±13±346 \pm 13 \pm 3 events, where the first error is statistical and the second is systematic, corresponding to a significance of 4.2 standard deviations including systematic uncertainties. We measure the branching fraction \BR(B^{0} \to \pi^{0} \pi^{0}) = (2.1 \pm 0.6 \pm 0.3) \times 10^{-6}, averaged over B0B^{0} and Bˉ0\bar{B}^{0} decays

    Observation of the Decay B=> J/psi eta K and Search for X(3872)=> J/psi eta

    Full text link
    We report the observation of the BB meson decay B±J/ψηK±B^\pm\to J/\psi \eta K^\pm and evidence for the decay B0J/ψηKS0B^0\to J/\psi \eta K^0_S, using {90} million BBbarBBbar events collected at the \ensuremath{\Upsilon{(4S)}}\xspace resonance with the BaBarBaBar detector at the PEP-II e+ee^+ e^- asymmetric-energy storage ring. We obtain branching fractions of B\cal{B}(B±J/ψηK±(B^\pm\to J/\psi \eta K^{\pm})=(10.8±2.3(stat.)±2.4(syst.))×105(10.8\pm 2.3(\rm{stat.})\pm 2.4(\rm{syst.}))\times 10^{-5} and B\cal{B}(B0J/ψηKS0(B^0\to J/\psi\eta K_{\rm{S}}^{0})=(8.4±2.6(stat.)±2.7(syst.))×105(8.4\pm 2.6(\rm{stat.})\pm 2.7(\rm{syst.}))\times 10^{-5}. We search for the new narrow mass state, the X(3872), recently reported by the Belle Collaboration, in the decay B^\pm\to X(3872)K^\pm, X(3872)\to \jpsi \eta and determine an upper limit of B\cal{B}(B^\pm \to X(3872) K^\pm \to \jpsi \eta K^\pm) <7.7×106<7.7\times 10^{-6} at 90% C.L.Comment: 7 pages and two figures, submitted to Phys. Rev. Lett

    Measurement of the branching fractions and CP asymmetry of B- -> (D(CP)K-)-K-0 decays with the BaBar detector

    Get PDF
    We present a study of B--->(DCPK-)-K-0 decays, where D-CP(0) is reconstructed in CP-even channels, based on a sample of 88.8x10(6) Y(4S)-->B (B) over bar decays collected with the BABAR detector at the PEP-II e(+)e(-) storage ring. We measure the ratio of Cabibbo-suppressed to Cabibbo-favored branching fractions B(B--->(DCPK-)-K-0)/B(B--->D(CP)(0)pi(-))=[8.8+/-1.6(stat)+/-0.5(syst)]x10(-2) and the CP asymmetry A(CP)=0.07+/-0.17(stat)+/-0.06(syst). We also measure B(B--->(DK-)-K-0)/B(B--->D(0)pi(-))=[8.31+/-0.35(stat)+/-0.20(syst)]x10(-2) using a sample of 61.0x10(6) B (B) over bar pairs

    Search for the rare leptonic decay B+->mu(+)nu(mu) (vol 92, art no 221803, 2004)

    Get PDF
    Corrections to the article published in the same review - same title (vol 92, art no 221803, 2004
    corecore