2,019 research outputs found

    Coordinated circadian timing through the integration of local inputs in Arabidopsis thaliana.

    Get PDF
    Individual plant cells have a genetic circuit, the circadian clock, that times key processes to the day-night cycle. These clocks are aligned to the day-night cycle by multiple environmental signals that vary across the plant. How does the plant integrate clock rhythms, both within and between organs, to ensure coordinated timing? To address this question, we examined the clock at the sub-tissue level across Arabidopsis thaliana seedlings under multiple environmental conditions and genetic backgrounds. Our results show that the clock runs at different speeds (periods) in each organ, which causes the clock to peak at different times across the plant in both constant environmental conditions and light-dark (LD) cycles. Closer examination reveals that spatial waves of clock gene expression propagate both within and between organs. Using a combination of modeling and experiment, we reveal that these spatial waves are the result of the period differences between organs and local coupling, rather than long-distance signaling. With further experiments we show that the endogenous period differences, and thus the spatial waves, can be generated by the organ specificity of inputs into the clock. We demonstrate this by modulating periods using light and metabolic signals, as well as with genetic perturbations. Our results reveal that plant clocks can be set locally by organ-specific inputs but coordinated globally via spatial waves of clock gene expression

    Comparing the performance of cluster random sampling and integrated threshold mapping for targeting trachoma control, using computer simulation.

    Get PDF
    BACKGROUND: Implementation of trachoma control strategies requires reliable district-level estimates of trachomatous inflammation-follicular (TF), generally collected using the recommended gold-standard cluster randomized surveys (CRS). Integrated Threshold Mapping (ITM) has been proposed as an integrated and cost-effective means of rapidly surveying trachoma in order to classify districts according to treatment thresholds. ITM differs from CRS in a number of important ways, including the use of a school-based sampling platform for children aged 1-9 and a different age distribution of participants. This study uses computerised sampling simulations to compare the performance of these survey designs and evaluate the impact of varying key parameters. METHODOLOGY/PRINCIPAL FINDINGS: Realistic pseudo gold standard data for 100 districts were generated that maintained the relative risk of disease between important sub-groups and incorporated empirical estimates of disease clustering at the household, village and district level. To simulate the different sampling approaches, 20 clusters were selected from each district, with individuals sampled according to the protocol for ITM and CRS. Results showed that ITM generally under-estimated the true prevalence of TF over a range of epidemiological settings and introduced more district misclassification according to treatment thresholds than did CRS. However, the extent of underestimation and resulting misclassification was found to be dependent on three main factors: (i) the district prevalence of TF; (ii) the relative risk of TF between enrolled and non-enrolled children within clusters; and (iii) the enrollment rate in schools. CONCLUSIONS/SIGNIFICANCE: Although in some contexts the two methodologies may be equivalent, ITM can introduce a bias-dependent shift as prevalence of TF increases, resulting in a greater risk of misclassification around treatment thresholds. In addition to strengthening the evidence base around choice of trachoma survey methodologies, this study illustrates the use of a simulated approach in addressing operational research questions for trachoma but also other NTDs

    Refractive change following pseudophakic vitrectomy: a retrospective review

    Get PDF
    Background To assess the occurrence and magnitude of refractive change in pseudophakic eyes undergoing 20 gauge pars plana vitrectomy without scleral buckling and to investigate possible aetiological factors. Methods Retrospective case note review of 87 pseudophakic eyes undergoing 20 gauge pars plana vitrectomy for a variety of vitreo-retinal conditions over a three-year period. Anterior chamber depth (ACD) was measured before and after vitrectomy surgery in 32 eyes. Forty-three pseudophakic fellow eyes were used as controls. Results Eighty-seven eyes (84 patients) were included in the study. Mean spherical equivalent refraction prior to vitrectomy was -0.20 dioptres, which changed to a mean of -0.65 dioptres postoperatively (standard deviation of refractive change 0.59, range-2.13 to 0.75 dioptres) (p < 0.001). Sixty-one of the 87(70%) eyes experienced a myopic shift and 45(52%) eyes had a myopic shift of -0.5 dioptres or more. Mean fellow eye refraction was -0.19 dioptres preoperatively and -0.17 dioptres postoperatively (p = 0.14)(n = 37) Mean ACD preoperatively was 3.29 mm and postoperatively 3.27 mm (p = 0.53) (n = 32) and there was no significant change in ACD with tamponade use. Regression analysis revealed no statistically significant association between changes in anterior chamber depth, as well as a wide variety of other pre-, intra and postoperative factors examined, and the refractive change observed. Conclusion Significant refractive changes occur in some pseudophakic patients undergoing 20 g pars plana vitrectomy. The mean change observed was a small myopic shift but the range was large. The aetiology of the refractive change is uncertain

    GeneMill: A 21st century platform for innovation

    Get PDF
    GeneMill officially launched on 4th February 2016 and is an open access academic facility located at The University of Liverpool that has been established for the high-throughput construction and testing of synthetic DNA constructs. GeneMill provides end-to-end design, construction and phenotypic characterization of small to large gene constructs or genetic circuits/pathways for academic and industrial applications. Thus, GeneMill is equipping the scientific community with easy access to the validated tools required to explore the possibilities of Synthetic Biology

    The Poison Pen: Bedside Diagnosis of Urinary Diquat

    Get PDF
    Diquat is a bipyridyl herbicide with nephrotoxic effects. This in vitro study demonstrates a colorimetric test for detection of diquat in human urine. Urine specimens using ten concentrations of diquat herbicide solution and controls for urine and glyphosate were prepared. A two-step assay (addition of bicarbonate followed by sodium dithionite) was performed, with a resulting color change of the original solution for each specimen. Color change intensity was noted immediately and after 30 min, by gross visual inspection. A green color with concentration-dependent intensity was detected in all specimens, in which concentrations of diquat solution ranged from 0.73 to 730 mg/L. This colorimetric effect disappeared after 30 min. The sodium bicarbonate/dithionite test may be useful as a qualitative bedside technique for the detection of urinary diquat in the appropriate clinical setting

    Immunotherapy of lung cancer: An update

    Get PDF
    In Germany lung cancer is the leading cause of cancer-associated death in men. Surgery, chemotherapy and radiation may enhance survival of patients suffering from lung cancer but the enhancement is typically transient and mostly absent with advanced disease; eventually more than 90% of lung cancer patients will die of disease. New approaches to the treatment of lung cancer are urgently needed. Immunotherapy may represent one new approach with low toxicity and high specificity but implementation has been a challenge because of the poor antigenic characterization of these tumors and their ability to escape immune responses. Several different immunotherapeutic treatment strategies have been developed. This review examines the current state of development and recent advances with respect to non-specific immune stimulation, cellular immunotherapy ( specific and non-specific), therapeutic cancer vaccines and gene therapy for lung cancer. The focus is primarily placed on immunotherapeutic cancer treatments that are already in clinical trial or well progressed in preclinical studies. Although there seems to be a promising future for immunotherapy in lung cancer, presently there is not standard immunotherapy available for clinical routine

    Flat-panel detectors: how much better are they?

    Get PDF
    Interventional and fluoroscopic imaging procedures for pediatric patients are becoming more prevalent because of the less-invasive nature of these procedures compared to alternatives such as surgery. Flat-panel X-ray detectors (FPD) for fluoroscopy are a new technology alternative to the image intensifier/TV (II/TV) digital system that has been in use for more than two decades. Two major FPD technologies have been implemented, based on indirect conversion of X-rays to light (using an X-ray scintillator) and then to proportional charge (using a photodiode), or direct conversion of X-rays into charge (using a semiconductor material) for signal acquisition and digitization. These detectors have proved very successful for high-exposure interventional procedures but lack the image quality of the II/TV system at the lowest exposure levels common in fluoroscopy. The benefits for FPD image quality include lack of geometric distortion, little or no veiling glare, a uniform response across the field-of-view, and improved ergonomics with better patient access. Better detective quantum efficiency indicates the possibility of reducing the patient dose in accordance with ALARA principles. However, first-generation FPD devices have been implemented with less than adequate acquisition flexibility (e.g., lack of tableside controls/information, inability to easily change protocols) and the presence of residual signals from previous exposures, and additional cost of equipment and long-term maintenance have been serious impediments to purchase and implementation. Technological advances of second generation and future hybrid FPD systems should solve many current issues. The answer to the question ‘how much better are they?–is ‘significantly better– and they are certainly worth consideration for replacement or new implementation of an imaging suite for pediatric fluoroscopy

    Experimental Quantum Hamiltonian Learning

    Get PDF
    Efficiently characterising quantum systems, verifying operations of quantum devices and validating underpinning physical models, are central challenges for the development of quantum technologies and for our continued understanding of foundational physics. Machine-learning enhanced by quantum simulators has been proposed as a route to improve the computational cost of performing these studies. Here we interface two different quantum systems through a classical channel - a silicon-photonics quantum simulator and an electron spin in a diamond nitrogen-vacancy centre - and use the former to learn the latter's Hamiltonian via Bayesian inference. We learn the salient Hamiltonian parameter with an uncertainty of approximately 10−510^{-5}. Furthermore, an observed saturation in the learning algorithm suggests deficiencies in the underlying Hamiltonian model, which we exploit to further improve the model itself. We go on to implement an interactive version of the protocol and experimentally show its ability to characterise the operation of the quantum photonic device. This work demonstrates powerful new quantum-enhanced techniques for investigating foundational physical models and characterising quantum technologies

    Susceptibility of hamsters to clostridium difficile isolates of differing toxinotype

    Get PDF
    Clostridium difficile is the most commonly associated cause of antibiotic associated disease (AAD), which caused ~21,000 cases of AAD in 2011 in the U.K. alone. The golden Syrian hamster model of CDI is an acute model displaying many of the clinical features of C. difficile disease. Using this model we characterised three clinical strains of C. difficile, all differing in toxinotype; CD1342 (PaLoc negative), M68 (toxinotype VIII) and BI-7 (toxinotype III). The naturally occurring non-toxic strain colonised all hamsters within 1-day post challenge (d.p.c.) with high-levels of spores being shed in the faeces of animals that appeared well throughout the entire experiment. However, some changes including increased neutrophil influx and unclotted red blood cells were observed at early time points despite the fact that the known C. difficile toxins (TcdA, TcdB and CDT) are absent from the genome. In contrast, hamsters challenged with strain M68 resulted in a 45% mortality rate, with those that survived challenge remaining highly colonised. It is currently unclear why some hamsters survive infection, as bacterial and toxin levels and histology scores were similar to those culled at a similar time-point. Hamsters challenged with strain BI-7 resulted in a rapid fatal infection in 100% of the hamsters approximately 26 hr post challenge. Severe caecal pathology, including transmural neutrophil infiltrates and extensive submucosal damage correlated with high levels of toxin measured in gut filtrates ex vivo. These data describes the infection kinetics and disease outcomes of 3 clinical C. difficile isolates differing in toxin carriage and provides additional insights to the role of each toxin in disease progression
    • …
    corecore