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Abstract

Background: Implementation of trachoma control strategies requires reliable district-level estimates of trachomatous
inflammation–follicular (TF), generally collected using the recommended gold-standard cluster randomized surveys (CRS).
Integrated Threshold Mapping (ITM) has been proposed as an integrated and cost-effective means of rapidly surveying
trachoma in order to classify districts according to treatment thresholds. ITM differs from CRS in a number of important
ways, including the use of a school-based sampling platform for children aged 1–9 and a different age distribution of
participants. This study uses computerised sampling simulations to compare the performance of these survey designs and
evaluate the impact of varying key parameters.

Methodology/Principal Findings: Realistic pseudo gold standard data for 100 districts were generated that maintained the
relative risk of disease between important sub-groups and incorporated empirical estimates of disease clustering at the
household, village and district level. To simulate the different sampling approaches, 20 clusters were selected from each
district, with individuals sampled according to the protocol for ITM and CRS. Results showed that ITM generally under-
estimated the true prevalence of TF over a range of epidemiological settings and introduced more district misclassification
according to treatment thresholds than did CRS. However, the extent of underestimation and resulting misclassification was
found to be dependent on three main factors: (i) the district prevalence of TF; (ii) the relative risk of TF between enrolled and
non-enrolled children within clusters; and (iii) the enrollment rate in schools.

Conclusions/Significance: Although in some contexts the two methodologies may be equivalent, ITM can introduce a bias-
dependent shift as prevalence of TF increases, resulting in a greater risk of misclassification around treatment thresholds. In
addition to strengthening the evidence base around choice of trachoma survey methodologies, this study illustrates the use
of a simulated approach in addressing operational research questions for trachoma but also other NTDs.
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Introduction

Since the establishment in 1998 of the Global Elimination of

Trachoma by 2020 (GET2020) Alliance, an increasing number of

endemic countries have implemented national programmes in an

effort to meet elimination targets. These targets are less than one

case of trachomatous trichiasis (TT) per 1000 total population

unknown to the health system, and ,5% trachomatous inflam-

mation–follicular (TF) in children aged 1–9 years, at the sub-

district level [1]. In response to these targets and a need to finalise

global mapping in time to allow programmatic impact, there has

been a renewed interest in developing cost-effective mapping

strategies and integrating survey and control activities with other

neglected tropical diseases (NTDs) [2–5]. Population-based

prevalence surveys (PBPS) remain the accepted ‘‘gold standard’’

for estimating the prevalence of trachoma within target popula-

tions and usually use cluster random sampling (CRS) to select non-

overlapping subpopulations (clusters) [6]. This methodology is

relatively expensive, however, and there is interest in developing

cheaper and more rapid methods as well as integrating with other

disease surveys [7]. Integrated Threshold Mapping (ITM) is a

sampling methodology currently being put forward as a cost-

effective means of rapidly surveying trachoma in remaining

unmapped districts and to allow treatment decisions to be made

and timely scale up of interventions to be achieved [8].

Both CRS and ITM diagnose trachoma based on the presence

of key clinical signs using the 1987 WHO simplified grading

system: TF in children aged 1–9 and TT in adults aged over 14
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[9]. These measures are easily collected in the field and routinely

used to inform intervention strategies. For example, in districts

where the prevalence of TF is greater than 10%, annual mass

drug administration (MDA) of azithromycin should be imple-

mented (Table 1). However, ITM differs from the accepted ‘‘gold

standard’’ survey methodology in a number of important ways,

briefly outlined in Table 2, including the use of a school-based

sampling platform for children aged 1–9 and a different age

distribution of participants. Differences in selection of participants

can have a varying impact on resulting prevalence estimates and

treatment decisions, depending on how disease is distributed in

the population. Age patterns of active trachoma indicate a higher

burden in children under 10 years, with the highest prevalences

found in preschool-aged children in hyperendemic areas [10,11].

A recent meta-analysis has reported the risk of TF to be lower in

children attending school in four African countries [12],

supporting widely-held beliefs that the risk of trachoma is likely

to vary by attendance (and enrollment) in trachoma endemic

contexts.. While CRS takes a community-based sample, that

theoretically is representative of the true age distribution and

prevalence of disease in this population, ITM may over- or

under-sample certain age groups and introduce a bias if the risk

differs between enrolled and non-enrolled children. In addition,

clustering of active trachoma by household has been observed in

a number of studies [13–15], and the precision of estimates from

both sampling methodologies are expected to be influenced by

this factor. A careful evaluation of how participant selection and

variation in epidemiological parameters impact prevalence

estimates and treatment decisions using the two methodologies

is warranted.

Although ITM was internally validated against CRS during the

pilot phase of the methodology’s development in Mali and Senegal

[8], and used in a nationwide mapping of Togo [16], these

evaluations were limited by several issues. In Mali and Senegal,

only a single district was surveyed providing limited evidence in

trachoma meso- and hyperendemic settings. Furthermore, the

CRS sample in these settings was partially comprised of existing

ITM clusters, which could potentially have biased the CRS

estimates and resulted in an overly-optimistic assessment of ITM.

Finally, although this methodology was used to map trachoma in

all districts in Togo, it is a trachoma hypoendemic country and so

results could not be generalised to other trachoma endemic

contexts.

Computerised sampling simulations have provided a convenient

platform recently to evaluate alternative survey designs for tropical

diseases including soil-transmitted helminthes, trachoma and

schistosomiasis [17–20]. This approach entails generating realistic

‘‘gold standard’’ data for a population that maintains observed

disease clustering, using epidemiological parameters derived from

existing datasets. A survey methodology can then be evaluated

using these data by selecting participants according to the specified

sampling protocol and deriving a prevalence estimate. There are a

number of advantages to using computerized sampling simulations

to compare survey designs, including the ability to i) simulate fully

enumerated data (allowing estimation of ‘‘true’’ prevalence of

disease), ii) incorporate sampling error by repeating simulations a

large number of times, iii) evaluate performance across a range of

endemicity settings and iv) explore how variation in factors

underlying clustering of disease in communities will influence the

performance of sampling methodologies. A similar comparison

performed empirically might be prohibitively expensive to carry

out, as it would require at minimum a full census survey of a large

number of districts across different endemicity settings and

implementation of each sampling protocol in the field.

This analysis used computerised sampling simulations to

compare the precision and accuracy of district level prevalence

estimates based on ITM versus CRS. Furthermore, we compared

the performance of both survey methodologies, in terms of their

ability to correctly classify districts according to established TF

prevalence thresholds and the factors that affect the degree of

equivalence. Equivalence between the two survey methods, under

different scenarios, was formally evaluated by testing the null

hypothesis that ITM yields the same programmatic results

compared to CRS.

Table 1. Azithromycin treatment strategies and classification at designated TF prevalence thresholds [1].

TF Prevalence
(district level) Classification Treatment strategy

,5% Active trachoma not a public health problem No MDA

5–9.9% Hypo-endemic Determine need for MDA at sub-district level

10–29.9% Meso-endemic MDA at district level ($3 yearsa)

.30% Hyper-endemic MDA at district level ($5 yearsa)

abefore reassessment to determine whether to stop or continue.
doi:10.1371/journal.pntd.0002389.t001

Author Summary

Reliable district-level prevalence estimates of active
trachoma are essential to targeting control interventions.
While cluster randomised surveys (CRS) remain the
recommended strategy for obtaining these estimates,
more rapid and cost-effective methods that can be
integrated with other diseases are under investigation.
One proposed method is Integrated Threshold Mapping
(ITM), which incorporates a school-based platform into the
sampling protocol. This study uses a computerised
sampling approach to evaluate whether ITM and CRS are
equivalent, and explore the impact of varying key
parameters on the performance of these sampling
methodologies. The results from these simulations reflect
a known limitation of school-based sampling: that result-
ing prevalence estimates are unreliable when the enroll-
ment is low and/or the risk of disease in schools differs
from communities. However, quantification of the perfor-
mance of ITM at the district level highlights the variation in
performance in different contexts and provides important
information for national control programmes. The results
from this study strengthen the evidence base around
trachoma sampling methodologies and demonstrate the
advantages of using a simulated approach to evaluate
different sampling scenarios.

Evaluation of Integrated Threshold Mapping
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Materials and Methods

Simulating sampling designs require gold standard data from

which to draw samples and compare sample estimates. There are

no perfect datasets available to conduct this analysis, which would

necessitate standarised, full census datasets of demographic and

epidemiological information for multiple districts. An alternative is

to simulate these data, using parameter estimates from empirical

data to generate realistic pseudo gold standard data on active

trachoma [21,22]. In this study, full census data from a single

community are used to parameterize disease clustering and,

incorporating information on between-district variation, to

‘expand’ the available dataset and generate data for a large

number of simulated communities within many districts.

Empirical datasets
Community level dataset. One dataset used to parameter-

ize this analysis comes from Kahe Village, Rombo District,

northern Tanzania, which is a single community that consists of 90

local administrative units called balozis. A fully enumerated census

and survey of trachoma was conducted in April to June 2000 by

means of a house-to-house survey, using the WHO simplified

grading system, prior to the initiation of any interventions against

trachoma. A single examiner collected these data and clinical

grading was validated through a live-patient inter-grader agree-

ment exercise using an international expert reference grader with

an agreement of 100% for TF. The dataset in total consists of 5748

individuals in 1103 households, with between 41–126 individuals

and 8–23 households per balozi. The dataset included information

on the presence or absence of TF in 1831 children aged 1–9 years,

where the prevalence was 33.4%. Data on school enrolment were

also available for a subset (23%) of children aged 6–9 years.

The demographic (age and gender) and household structure

present in Kahe was used for all simulated communities in the

expanded dataset. This dataset was also used to provide initial

values used to parameterize the models, including the relative risk

of TF between children aged 1–5 years and 6–9 years and the

intra-cluster correlation (ICC) measuring the degree of disease

clustering within households. The subset of data with information

on enrolment provided an initial value for the relative risk of TF in

children aged 6–9 who were enrolled in school to those who did

not. In addition, this dataset was used to assess whether there was

an additional household level risk associated with having a

schoolgoing/non-schoolgoing sibling and inform the simulation

model (results presented in the Technical Appendix).

District level dataset. Data on the prevalence of active

trachoma were available for 305 clusters (non-overlapping

sampling populations) from 29 districts in Kenya, surveyed as

part of the National Trachoma Control Programme between

2004–2012 and included within the Global Atlas of Trachoma

[23,24]. These data represent available disaggregated data in a

broadly similar context, and importantly include nearly all

endemic districts. These data were used to model variation

between and within districts (Figure 1) in order to inform

simulation of realistic district and cluster-level prevalence values.

Dataset expansion
The process of expanding the community dataset to simulate

realistic data for 100 communities within each of 100 districts is

fully described in the Technical Appendix (Supplement 1). In

brief, district level prevalence estimates were generated covering

all endemicity classes and used to simulate community level

estimates of TF in children aged 1–9 years. The burden of TF

within each simulated community was distributed among the

population according to parameters initially defined by the above

datasets (Table 3) in order to maintain disease clustering within

households and subpopulations. Enrolment is defined as being

‘‘officially registered in a given educational programme, or stage or

module thereof, regardless of age’’ [25], while attendance refers to

an individual’s presence at school at a given time. In these

simulations we have assumed that all enrolled children attend on

the day of the survey, however recognize that enrolment statistics

are typically much higher than attendance. Enrolment was varied

to assess the impact it has on sampling performance, and children

identified as ‘‘school-going’’ were allowed to vary during the

simulation process.

To avoid basing simulations on data parametized by single

village-level and district level datasets, additional pseudo-gold

standard datasets were simulated varying each of the epidemio-

logical parameters identified in Table 3 while holding other factors

constant. This allowed an exploration of the impact of those

parameters on the performance of the different sampling

methodologies and the robustness of the different sampling

approaches over other epidemiological settings. This included

varying the level of household clustering quantified by the ICC,

the relative risk of TF observed between enrolled and non-enrolled

children, and the relative risk of TF between age group using

parameters shown in Table 3.

Sampling simulations
Survey methodologies. CRS for trachoma uses a standard

two-stage or multi-stage design, often comprising a random

selection of approximately 20 villages (clusters) at the first stage

and selection of households at the second [26]. Selection of

households may be carried out using simple random sampling,

systematic sampling, the random walk or compact segment

sampling. The sample size for CRS is calculated by defining

parameters which include: expected prevalence estimates, accept-

able error margin or precision, required confidence level, and

design effect. In contrast, ITM employs convenience sampling of

Table 2. Methodological differences between cluster random sampling (CRS) and Integrated Threshold Mapping (ITM).

CRS ITM

Platform Community-based School-based with younger children brought from the
community

Cluster selection Probability proportional to size or random selection Random selection: minimum 2 per subdistrict

Participant selection Household Children aged 6–9 at school & 1–5 year old children from
communities

Sample size and age groups 100 aged 1–9 years 25 aged 1–5 years and 25 aged 6–9 years

doi:10.1371/journal.pntd.0002389.t002

Evaluation of Integrated Threshold Mapping
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school children, pre-school children and women of child-bearing

age to estimate the prevalence of trachoma [27]. At least two

villages are selected per sub-district, with a minimum of 20 villages

selected per district. In each village, a single school is randomly

selected as the testing site. Children enrolled at that school are

asked to come to the location, and adults from the community are

also asked to assemble here and bring children aged 1–5 years.

Systematic sampling is then used to select 25 children aged 1–5, 25

children aged 6–9 and 50 adult women (or 100 adults) aged $15

years.

Sampling process. A computerized simulation approach,

using Monte Carlo methods, was used to randomly select 20

clusters from each district and sample individuals within each

cluster according to the protocol for ITM and CRS (Table 2). For

this analysis, a sample size of 100 individuals was assumed for CRS

and participants selected from a random selection of households

until the sample size met. It was assumed that children aged 1–5

years that would be brought to schools by their mother (or other

adult household member) and sampled by ITM would be those

with school-going siblings aged 6–9 years. We explored the impact

of this assumption by also sampling a random selection of children

in this age group. Sampling simulations were repeated 1000 times

on each dataset using both methodologies.

Analysis
District-level prevalence estimates generated by the two

sampling methodologies were used to classify districts according

to endemicity class for each simulation, using categories

corresponding to established treatment thresholds: hypo-endemic

(,10%), meso-endemic (10–30%) and hyper-endemic (.30%)

(Table 1). The performance of each method was then quantified in

terms of the proportion of times each district was correctly

Figure 1. Histogram of the district variance of TF in Kenya (A) and density functions used to simulate data (B). Variance in the
prevalence of active trachoma was quantified within 29 districts in Kenya. The mean within-district variance was then used to inform beta density
functions for simulating cluster-level prevalence values for varying district level prevalence values.
doi:10.1371/journal.pntd.0002389.g001

Table 3. Description of key epidemiological parameters used in the simulation model and sensitivity analysisa.

Key Parameter Rationale Method for estimation & Initial Value Sensitivity Analysis

1. Age-specific prevalence of TF:
TF in 1–5 years versus 6–9 years

In order to expand a cluster level
prevalence estimate in children
aged 1–9 years to the two age groups,
need to know RR between groups.
This will likely vary with endemicity.

Estimated from gold standard datasets Initial
value: 2.0

Varied parameter:
1.3, 1.5, 1.8, 1.0, 2.0

2. Risk of TF in enrolled children vs
non-enrolled children

Likely that enrolled children will have
lower TF prevalence

Estimated from gold standard datasets Initial
value: 0.5

Varied parameter:
0.25, 0.33, 0.5, 0.75, 1.0

3. School attendance This will affect the sample size in schools of
6–15 year olds and affect the impact of
parameter 2.

Ministry of Education data Initial value: 0.7 Varied parameter:
0.4 and 0.7

4. Clustering within households: risk
of TF in children aged 1–5 years with
a TF positive/negative sibling

Clustering at the household level will
mean that children with TF positive
siblings are more likely to have TF

Estimated from gold standard datasets Initial
value: 0.2

Varied parameter:
0.1, 0.2, 0.3, 0.4, 0.5

TF: trachomatous inflammation–follicular; RR: relative risk.
aRandom selection of 20 clusters were used in simulations for both.
doi:10.1371/journal.pntd.0002389.t003

Evaluation of Integrated Threshold Mapping
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classified over 1000 simulations according to TF treatment

thresholds.

Operating Characteristic (OC) curve
Due to the complicated sampling distributions of these

methodologies, it is not possible to calculate the full theoretical

OC curves. However, we can visualize the empirical OC curves

resulting from these simulation studies, which are generated from

the proportion of times a district is correctly classified in each

endemicity class using the two methodologies, over a ‘‘range’’ of

district prevalence values. For each survey method, this allowed us

to establish the range of district prevalence values in which the

probability of correctly classifying a district is less than or equal to

0.80.

Equivalency
Overall agreement in district endemicity classifications by the

two methodologies was assessed using a weighted kappa-statistic.

This statistic provides a measure of agreement between the two

methods adjusted for chance, where a value of zero indicates

agreement no better than chance. Weighting is useful when there

are more than two ordered categories, so that the magnitude of

disagreement between categories is allowed to vary (i.e., difference

between ,10% and 10–30% is not as great as that between ,10%

and .30%). Increasing kappa values correspond to better

agreement between the two methods, where agreement is often

interpreted as slight (,0.2), fair (0.2–0.4), moderate (0.4–0.6),

substantial (0.6–0.8) and almost perfect ($0.8) [28].

Equivalence between the two survey methods was formally

evaluated by testing the null hypothesis that ITM yields the same

programmatic results compared to CRS. The distribution of the

difference in the proportion of correctly classified districts by ITM

and CRS was generated and the mean and 95% CIs plotted in

relation to delta, D, a threshold corresponding to a predefined level

of difference deemed programmatically important. In these

analyses, delta was initially assumed to be 20%, based on the

rationale that this is equal to 80% of the simulations being

classified the same by ITM and CRS and roughly corresponding

to a standard level of acceptable error. Where the CI fell within

this range, the survey methods were classified as equivalent for that

district, while those that fell outside were classified as not

equivalent and those that overlapped with the thresholds as

inconclusive. Districts were stratified by the relative risk of TF and

endemicity class to evaluate whether the equivalence of the two

methodologies varied with these parameters.

Results

Estimated prevalence
Overall, the results indicate that ITM under-estimates the true

prevalence of TF compared to CRS and that the magnitude of

difference between estimates from these methodologies increases

with endemicity. This is illustrated in Figures 2 and 3, which

compare the two sampling strategies where all parameters are set

to the initial values described in Table 3. Figure 2 presents filled

density plots in example hypo-, meso-, and hyer-endemic districts,

where the red line represents the true prevalence value for that

district, the curves represent the distribution of prevalence

estimates from the 1000 simulations using the CRS method (red)

and ITM (blue). The results suggest that the systematic error

resulting from school-based sampling is proportional to the

prevalence, so that the absolute bias increases linearly as the

prevalence increases.

District-level classification
Figure 3 plots the proportion of times each of 100 districts were

correctly classified (of 1000 simulations) against the district-level

true prevalence for each sampling methodology, where the relative

risk of TF in enrolled and non-enrolled children is equal to 0.5 and

enrolment rate is 0.7. The green lines correspond to the treatment

thresholds while the areas shaded red and grey around these

thresholds have a ‘‘higher’’ risk of misclassification by the

corresponding sampling methodology. Within these prevalence

ranges, districts will be correctly classified less than 80% of the

time. Performance of both CRS and ITM was lower closer to

treatment thresholds. Compared to CRS, where misclassification

error was fairly symmetrical around treatment thresholds, ITM

tended to underestimate the prevalence of TF, resulting in a

corresponding shift and widening of the region where potential

error is known to be high.

Using a relative risk of TF in enrolled versus non-enrolled

children equal to 0.5, there was ‘‘almost perfect’’ agreement

(Kappa = 0.86) in district-level endemicity classification between

ITM and CRS overall in the 1000 simulated samples. However,

agreement between ITM and CRS decreased with increasing

endemicity category, with substantial agreement found in hypoen-

demic districts (Kappa = 0.71) and only moderate agreement in

mesoendemic (Kappa = 0.47) and hyperendemic districts (Kap-

pa = 0.41).

The equivalence analysis in Figure 4 illustrates changes in the

distribution of the difference in the proportion of correctly

classified districts by ITM and CRS by endemicity class. The

results suggest that the two sampling methodologies are equivalent

in hypoendemic areas but the wider confidence intervals in meso-

or hyper-endemic areas indicate that they less likely to be

equivalent in these settings due to a greater degree of bias.

Sensitivity analysis
Sensitivity analysis of the impact of varying key parameters as

shown in Table 3 suggested that the relative risk of TF between

enrolled and non-enrolled children and the enrollment rate will

define the performance of ITM. This is illustrated in figure 5

which plots the probability that ITM and CRS will give equivalent

results in a district (i.e. the probabilities of correctly classifying a

district using ITM and CRS differ no more than 0.20) given

endemicity class and varying these parameters. Where enrollment

is set as 0.7 and the relative risk is 0.75 or above, there is a high

($80%) probability that ITM and CRS will be equivalent across

all endemicity classes. As enrollment decreases and the difference

in risk between enrolled and non-enrolled children increases, ITM

increasingly misclassifies districts compared to CRS. This effect is

likely to be greater in meso- and hyper- endemic districts, due to a

greater magnitude of bias and resulting in misclassification over a

wider range of prevalence values around the 10% and 30%

thresholds. The impact on misclassification is also illustrated by

Figure 6, which plots the range of prevalence values where the risk

of misclassification using the two survey methodologies is greater

or equal to 0.20. Classification error associated with CRS is

symmetrically distributed approximately 62 percent around each

threshold and does not vary with these parameters. In contrast, the

range of misclassification associated with ITM not only increases

with a greater difference between enrolled and non-enrolled

children, but also shifts to include more prevalence values above

the threshold. Within this range of misclassification, the perfor-

mance of ITM also decreases as a response to the degree of

underestimation, so that in certain contexts ITM is unable to

correctly classify any districts at or slightly above 30% prevalence.

Variation in the relative risk of TF between age groups and the

Evaluation of Integrated Threshold Mapping
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degree of household clustering defined by the ICC did not have an

impact on performance. Evaluation of our assumption that

children aged 1–5 years sampled by ITM were siblings of enrolled

children also had no observable impact on the performance of

ITM.

Discussion

Our simulations show that over a range of epidemiological

settings, ITM will under-estimate the true prevalence of TF. The

error introduced by ITM also means that districts are more prone

to misclassification according to treatment thresholds than by

CRS. The extent of underestimation and misclassification of

districts introduced by ITM is dependent on three main factors: (i)

the district prevalence of TF; (ii) the relative risk of TF between

enrolled and non-enrolled children within clusters; and (iii) the

enrollment rate in schools. In general, the overall agreement

between the two methods is high, but as the difference in risk of

TF between enrolled and non-enrolled children becomes more

pronounced, there is a shift in prevalence estimates corresponding

to the magnitude of the bias. In these situations, the null

hypothesis of programmatic equivalence between the two meth-

odologies is not supported.

Use of a school-based platform is a key methodological

difference between CRS and ITM and, while the potential pitfalls

of this approach are well recognised, the impact of this strategy on

treatment decisions has not been systematically evaluated until

now [6,29]. Our simulations highlighted the key influence of the

Figure 2. Density plots of prevalence estimates generated by CRS and ITM sampling methodologies. Plots are generated using
simulated data and present results from a single district within each endemicity class. The red line represents the true district-level prevalence, the
curves are histograms of values from 1000 simulations using the CRS method (red) and ITM method (blue).
doi:10.1371/journal.pntd.0002389.g002
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relative risk of TF between enrolled and non-enrolled children and

the enrollment rate on the performance of ITM. Furthermore, we

were able to quantify the impact of these parameters on district

classification over a range of endemicity settings. In areas where

the risk of TF is similar between enrolled and non-enrolled

children, there is evidence that CRS and ITM will be equivalent

and classify districts correctly within an acceptable range of

difference. Where risk is lower in enrolled children, a negative bias

is introduced that is proportional to the magnitude of the

difference in risk and reflected in greater absolute discrepancies

between the two sampling methodologies as prevalence of TF

increases. A lower enrolment rate effectively constrains the

‘‘sample’’ of the total population of children aged 6–9 attending

schools and has the effect of increasing uncertainty around the

prevalence estimate due to the greater effect of a positive child in

the sample [30]. Compared to CRS, where misclassification error

is fairly symmetrical around treatment thresholds across all

scenarios, ITM can introduce a bias-dependent right shift and

widen the range of prevalence values where misclassification error

is high. In contrast, varying the relative risk of TF between age

groups and the average ICC did not have a noticeable impact on

performance of ITM and CRS at the district level, either in

magnitude or shift.

As a consequence of this potential bias, ITM may be less likely

than CRS to misclassify areas as greater than 10% or 30% when

the true prevalence is below this threshold, but more likely to

misclassify areas as lower when the true prevalence is higher.

Misclassification is more comparable between the two methodol-

ogies at the 10% threshold, particularly when the relative risk

between enrolled and non-enrolled children is closer to one. At

this threshold, the misclassification by ITM would result in

resources being allocated for further surveys at the subdistrict level

instead of implementing MDA for the entire district. In practice,

the difference in performance is most likely to impact interventions

around the 30% threshold, where areas misclassified by ITM

would be treated for three years before an impact survey instead of

being treated for five years. Districts that fall within areas of high

misclassification are of operational interest and the optimal choice

of survey design is likely to be a function of the cost of the surveys,

the costs of treatment associated with misclassification around both

thresholds and the likely impact of treatment decisions on long

term transmission dynamics. For example, while a particular

survey design may be a cost-effective method to classify districts at

a given round, a more accurate but more expensive survey design

may allow quicker elimination of the disease leading to cost-

savings in the future. Incorporating costs and the impact of

treatment decisions on transmission was beyond the scope of this

paper, but is the focus of future study.

Our use of computerised simulation has a number of advantages

over field evaluations of trachoma sampling approaches [8,16].

First, whereas inadequate evidence was available for meso- and

hyperendemic settings, our approach allowed evaluation of ITM

and CRS over a range of epidemiological settings. Second,

simulations allowed the two sampling methodologies to be carried

out independently of one another and repeated 1000 times for

each district, thus accounting for sampling error in our estimates of

performance. Finally, this approach allows key parameters to be

explicitly defined and varied in a sensitivity analysis in order to

Figure 3. Performance of ITM and CRS compared to true prevalence. The proportion of times each of 100 districts were correctly classified
by ITM and CRS were compared to true prevalence, where the relative risk of TF in enrolled and non-enrolled children is equal to 0.5 and enrolment
rate is 0.7. The green lines correspond to the treatment thresholds and the boxes in red and grey around these thresholds to areas of ‘‘higher’’
misclassification, where the districts will be correctly classified less than 80% of the time.
doi:10.1371/journal.pntd.0002389.g003
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explore their impact on performance in different contexts. This

aspect of the study is important, as these parameters are likely to

vary widely in settings where ITM might be used to generate TF

prevalence estimates.

Although our study explored the performance of ITM and CRS

in varying contexts, there are a number of potential limitations

that may limit its generalisability. First, although key factors were

varied in order to test sampling strategies in different epidemio-

logical scenarios, exploring datasets similar to the data from Kahe

in Tanzania and from Kenya would allow a more realistic range of

parameters to be incorporated. In addition, parameterisation of

the model assumed constant relationships which may be more

complex in reality. Certain factors, like household clustering of

trachoma, may vary markedly based on local transmission

intensity, however no clear and consistent relationship was

supported by available data. This may partly be due to random

error introduced by the clinical sign TF, which is known to be an

unreliable marker of C. trachomatis infection [31,32]. A better

estimation of these parameters, such as the relative risk of TF

between enrolled and non-enrolled children, based on their

relationship with endemicity may require collection of new data in

the field. Second, these simulations sampled participants from a

single demographic and household structure based on a commu-

nity from Tanzania. Although the children selected as ‘‘enrolled’’

varied in the simulated datasets, it is possible that disease clustering

within households might have a greater effect in other community

structures. Furthermore, these simulations represent a general

sampling scenario, and in the field there is more variation in the

way that ITM and CRS are implemented. (For example, ITM

randomly samples two clusters per subdistrict with a minimum of

20 per district, so the number of clusters sampled varies indirectly

with district size [27]. In contrast, the number of clusters sampled

by CRS is dependent on population size and is often selected using

probability proportional to size in order to estimate a reliable

district-level prevalence [6].) While use of a school-based survey

platform offers a number of operational advantages, it is difficult to

justify this approach in many contexts. In actual practice, one

might expect trachoma ‘‘hotspots’’ to have poorer socioeconomic

conditions and lower school enrollment, thus limiting the potential

use of ITM to identify disease foci. More widespread collection of

indicators of enrollment and attendance as part of trachoma

surveys is encouraged in order to inform survey design. In

addition, there is a lack of guidance on how ITM sampling

methods would be operationalised in the event of non-response

from family members bringing young children to the school. If the

older children were oversampled, or a smaller sample of older

children accepted, then ITM would underestimate the prevalence

of TF to a greater degree. Finally, both the threshold of

‘‘acceptable difference’’ to be used in the equivalence analysis

and the thresholds themselves deserve more discussion. To some

degree, treatment thresholds are imprecise as they are based on

unreliable clinical indicators and the impact on transmission of

misclassifying a district that has a prevalence of 9% versus 12% is

not well defined. As the elimination target for active trachoma is to

reduce its prevalence to less than 5% in every sub-district, the

transmission dynamics around these lower thresholds is of crucial

interest. The degree of acceptable difference in performance

between survey designs will depend on these transmission

dynamics over the course of a control programme, as well as

costs associated with misclassification.

Figure 4. Equivalence of ITM compared to CRS by endemicity class. The figure presents the difference in the proportion of times ITM
correctly classified districts compared to CRS (over 1000 simulations) by endemicity class in relation to an assumed value (20%) representing an
important programmatic difference. The blue square is the mean difference in proportions and the lines correspond to the difference in the 95% CI.
The two methods are deemed equivalent when ITM correctly classifies districts differently to CRS no more than 20% of the time.
doi:10.1371/journal.pntd.0002389.g004
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Figure 5. Equivalence in district classification by ITM and CRS. Equivalence is determined by calculating the difference in the probabilities
that CRS and ITM will correctly classify a given district over 1000 simulations, and estimating whether this difference exceeds a delta equal to 0.2,
signifying that two methods classify districts differently no more than 20% of the time. The figure presents equivalence by endemicity class and
relative risk of TF in enrolled and non-enrolled children, where enrolment is equal to 0.4 (blue) or 0.7 (green).
doi:10.1371/journal.pntd.0002389.g005

Figure 6. Range of true prevalence values with high risk of misclassification by CRS and ITM. Range of values in which the risk of
misclassifying a district using CRS and ITM sampling methodologies is greater or equal to 0.20 around the 10% and 30% thresholds, with the
enrolment rate equal to 0.7.
doi:10.1371/journal.pntd.0002389.g006
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The results from this study strengthen the evidence base around

trachoma sampling methodologies and demonstrate the advan-

tages of using a simulated approach to evaluate different sampling

scenarios. To a large extent, the results from these simulations

reflect a known limitation of school-based sampling: that resulting

prevalence estimates are unreliable when the enrollment is low

and/or the risk of disease in schools differs from communities.

However, quantification of the performance of ITM at the district

level in different contexts provides important information for

national control programmes. In areas where enrolment is known

to be very high, and it can be reliably inferred that the bias is

minimized, then ITM may provide a rapid, cost-effective

alternative to CRS [8,33]. Future work could incorporate costing

of different survey approaches and extension to include mathe-

matical modeling to simulate the impact of different combinations

of control interventions on transmission [34].

This paper serves as a demonstration of the use of sampling

simulations to explore alternative sampling approaches not only

for trachoma but also for other NTDs. We propose that this

methodology be adopted as a cost-effective methodology to

identify and evaluate potential strategies for the mapping,

monitoring and evaluation, and surveillance, prior to field testing

in multiple settings. Such simulations can identify key parameters

including performance of sampling strategies and help inform the

design of field evaluations. In turn, field studies can provide better

estimates of key parameters and serve to refine simulation. We

advocate an iterative process of simulation and field studies to

identify optimal and cost-effective sampling strategies for a range

of NTDs.
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