40 research outputs found
Colorectal cancer screening among African American church members: A qualitative and quantitative study of patient-provider communication
BACKGROUND: A healthcare provider's recommendation to undergo screening has been shown to be one of the strongest predictors of completing a colorectal cancer (CRC) screening test. We sought to determine the relationship between the general quality of self-rated patient-provider communication and the completion of CRC screening. METHODS: A formative study using qualitative data from focus groups and quantitative data from a cross-sectional survey of church members about the quality of their communication with their healthcare provider, their CRC risk knowledge, and whether they had completed CRC screening tests. Focus group participants were a convenience sample of African American church members. Participants for the survey were recruited by telephone from membership lists of 12 African American churches located in rural counties of North Carolina to participate in the WATCH (Wellness for African Americans Through Churches) Project. RESULTS: Focus Groups. Six focus groups (n = 45) were conducted prior to the baseline survey. Discussions focused on CRC knowledge, and perceived barriers/motivators to CRC screening. A theme that emerged during each groups' discussion about CRC screening was the quality of the participants' communication with their health care provider. Survey. Among the 397 participants over age 50, 31% reported CRC screening within the recommended guidelines. Participants who self-rated their communication as good were more likely to have been screened (36%) within the recommended guidelines than were participants with poor communication (17%) (OR = 2.8, 95% CI 1.2, 6.4; p = 0.013). Participants who had adequate CRC knowledge completed CRC screening at a higher rate than those with inadequate knowledge (p = 0.011). The percentage of participants with CRC screening in the recommended guidelines, stratified by communication and knowledge group were: 42% for good communication/adequate knowledge; 27% for good communication/inadequate knowledge; 29% for poor communication/adequate knowledge; and 5% for poor communication/inadequate knowledge. CONCLUSIONS: Participants who rated their patient-provider communication as good were more likely to have completed CRC screening tests than those reporting poor communication. Among participants reporting good communication, knowledge about colorectal cancer was also associated with test completion. Interventions to improve patient-provider communication may be important to increase low rates of CRC screening test completion among African Americans
The Relationship between Population Structure and Aluminum Tolerance in Cultivated Sorghum
Background: Acid soils comprise up to 50% of the world's arable lands and in these areas aluminum (Al) toxicity impairs root growth, strongly limiting crop yield. Food security is thereby compromised in many developing countries located in tropical and subtropical regions worldwide. In sorghum, SbMATE, an Al-activated citrate transporter, underlies the Alt(SB) locus on chromosome 3 and confers Al tolerance via Al-activated root citrate release. Methodology: Population structure was studied in 254 sorghum accessions representative of the diversity present in cultivated sorghums. Al tolerance was assessed as the degree of root growth inhibition in nutrient solution containing Al. A genetic analysis based on markers flanking Alt(SB) and SbMATE expression was undertaken to assess a possible role for Alt(SB) in Al tolerant accessions. In addition, the mode of gene action was estimated concerning the Al tolerance trait. Comparisons between models that include population structure were applied to assess the importance of each subpopulation to Al tolerance. Conclusion/Significance: Six subpopulations were revealed featuring specific racial and geographic origins. Al tolerance was found to be rather rare and present primarily in guinea and to lesser extent in caudatum subpopulations. Alt(SB) was found to play a role in Al tolerance in most of the Al tolerant accessions. A striking variation was observed in the mode of gene action for the Al tolerance trait, which ranged from almost complete recessivity to near complete dominance, with a higher frequency of partially recessive sources of Al tolerance. A possible interpretation of our results concerning the origin and evolution of Al tolerance in cultivated sorghum is discussed. This study demonstrates the importance of deeply exploring the crop diversity reservoir both for a comprehensive view of the dynamics underlying the distribution and function of Al tolerance genes and to design efficient molecular breeding strategies aimed at enhancing Al tolerance.CGIAR[G3007.04]McKnight FoundationFundacao de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG)National Council for Scientific and Technological Development (CNPq
How land use/land cover changes can affect water, flooding and sedimentation in a tropical watershed: a case study using distributed modeling in the Upper Citarum watershed, Indonesia
[EN] Human activity has produced severe LULC changes within the Upper Citarum watershed and these changes are predicted to continue in the future. With an increase in population parallel to a 141% increment in urban areas, a reduction of rice fields and the replacement of forests with cultivations have been found in the past. Accordingly, LCM model was used to forecast the LULC in 2029. A distributed model called TETIS was implemented in the Upper Citarum watershed to assess the impact of the different historical and future LULC scenarios on its water and sediment cycles. This model was calibrated and validated with different LULCs. For the implementation of the sediment sub-model, it was crucial to use the bathymetric information of the reservoir located at the catchment's outlet. Deforestation and urbanization have been shown to be the most influential factors affecting the alteration of the hydrological and sedimentological processes in the Upper Citarum watershed. The change of LULC decreases evapotranspiration and as a direct consequence, the water yield increased by 15% and 40% during the periods 1994-2014 and 2014-2029, respectively. These increments are caused by the rise of three components in the runoff: overland flow, interflow and base flow. Apart from that, these changes in LULC increased the area of non-tolerable erosion from 412 km(2) in 1994 to 499 km(2) in 2029. The mean sediment yield increased from 3.1 Mton -yr(-1) in the 1994 LULC scenario to 6.7 Mton-yr(-1) in the 2029 LULC scenario. An increment of this magnitude will be catastrophic for the operation of the Saguling Dam.This study was partially funded by the Spanish Ministry of Economy and Competitiveness through the research projects TETISMED (CGL2014-58,127-C3-3-R) and TETISCHANGE (RTI2018-093717-B-I00). The authors are also thankful to the Directorate General of Higher Education of Indonesia (DIKTI) for the Ph.D. funding of the first author.Siswanto, SY.; Francés, F. (2019). How land use/land cover changes can affect water, flooding and sedimentation in a tropical watershed: a case study using distributed modeling in the Upper Citarum watershed, Indonesia. Environmental Earth Sciences. 78(17):1-15. https://doi.org/10.1007/s12665-019-8561-0S115781
The Gene Pool Concept Applied to Crop Wild Relatives: An Evolutionary Perspective
Crop wild relatives (CWR) can provide important resources for the genetic improvement of cultivated species. Because crops are often related to many wild species and because exploration of CWR for useful traits can take many years and substantial resources, the categorization of CWR based on a comprehensive assessment of their potential for use is an important knowledge foundation for breeding programs. The initial approach for categorizing CWR was based on crossing studies to empirically establish which species were interfertile with the crop. The foundational concept of distinct gene pools published almost 50 years ago was developed from these observations. However, the task of experimentally assessing all potential CWR proved too vast; therefore, proxies based on phylogenetic and other advanced scientific information have been explored. A current major approach to categorize CWR aims to comprehensively synthesize experimental data, taxonomic information, and phylogenetic studies. This approach very often ends up relying not only on the synthesis of data but also intuition and expert opinion and is therefore difficult to apply widely in a reproducible manner. Here, we explore the potential for a stronger standardization of the categorization method, with focus on evolutionary relationships among species combined with information on patterns of interfertility between species. Evolutionary relationships can be revealed with increasing resolution via next-generation sequencing, through the application of the multispecies coalescent model and using focused analyses on species discovery and delimitation that bridge population genetics and phylogenetics fields. Evolutionary studies of reproductive isolation can inform the understanding of patterns of interfertility in plants. For CWR, prezygotic postpollination reproductive barriers and intrinsic postzygotic barriers are the most important factors and determine the probability of producing viable and fertile offspring. To further the assessment of CWR for use in plant breeding, we present observed and predicted gene pool indices. The observed index quantifies patterns of interfertility based on fertilization success, seed production, offspring viability, and hybrid fertility. The predicted gene pool index requires further development of the understanding of quantitative and qualitative relationships between reproductive barriers, measures of genetic relatedness, and other relevant characteristics for crops and their wild relatives
Meiosis in elephant grass (Pennisetum purpureum), pearl millet (Pennisetum glaucum) (Poaceae, Poales) and their interspecific hybrids
The cultivated and sexually compatible species Pennisetum purpureum (elephant grass, 2n = 4x = 28) and Pennisetum glaucum (pearl millet, 2n = 2x = 14) can undergo hybridization which favors the amplification of their genetic background and the introgression of favorable alleles into breeding programs. The main problem with interspecific hybrids of these species is infertility due to triploidy (2n = 3x = 21). This study describes meiosis in elephant grass x pearl millet hybrids and their progenitors. Panicles were prepared according to the conventional protocol for meiotic studies and Alexander’s stain was used for assessing pollen viability. Pearl millet accessions presented regular meiosis with seven bivalents and high pollen viability. For elephant grass, 14 bivalents in diakinesis and metaphase I were observed. The BAG 63 elephant grass accession, derived from tissue culture, presented a high frequency of meiotic abnormalities. The three hybrid accessions presented a high frequency of abnormalities characterized by irregular chromosomal segregation which resulted in the formation of sterile pollen