230 research outputs found

    Static quarks with improved statistical precision

    Full text link
    We present a numerical study for different discretisations of the static action, concerning cut-off effects and the growth of statistical errors with Euclidean time. An error reduction by an order of magnitude can be obtained with respect to the Eichten-Hill action, for time separations beyond 1.3 fm, keeping discretization errors small. The best actions lead to a big improvement on the precision of the quark mass Mb and F_Bs in the static approximation.Comment: 3 pages, 4 figures, Lattice2003(heavy

    Towards a precision computation of f_Bs in quenched QCD

    Full text link
    We present a computation of the decay constant f_Bs in quenched QCD. Our strategy is to combine new precise data from the static approximation with an interpolation of the decay constant around the charm quark mass region. This computation is the first step in demonstrating the feasability of a strategy for f_B in full QCD. The continuum limits in the static theory and at finite mass are taken separately and will be further improved.Comment: Lattice2003(heavy), 3 pages, 2 figure

    Can electron distribution functions be derived through the Sunyaev-Zel'dovich effect?

    Full text link
    Measurements of the Sunyaev-Zel'dovich (hereafter SZ) effect distortion of the cosmic microwave background provide methods to derive the gas pressure and temperature of galaxy clusters. Here we study the ability of SZ effect observations to derive the electron distribution function (DF) in massive galaxy clusters. Our calculations of the SZ effect include relativistic corrections considered within the framework of the Wright formalism and use a decomposition technique of electron DFs into Fourier series. Using multi-frequency measurements of the SZ effect, we find the solution of a linear system of equations that is used to derive the Fourier coefficients; we further analyze different frequency samples to decrease uncertainties in Fourier coefficient estimations. We propose a method to derive DFs of electrons using SZ multi-frequency observations of massive galaxy clusters. We found that the best frequency sample to derive an electron DF includes high frequencies ν\nu=375, 600, 700, 857 GHz. We show that it is possible to distinguish a Juttner DF from a Maxwell-Bolzman DF as well as from a Juttner DF with the second electron population by means of SZ observations for the best frequency sample if the precision of SZ intensity measurements is less than 0.1%. We demonstrate by means of 3D hydrodynamic numerical simulations of a hot merging galaxy cluster that the morphologies of SZ intensity maps are different for frequencies ν\nu=375, 600, 700, 857 GHz. We stress that measurements of SZ intensities at these frequencies are a promising tool for studying electron distribution functions in galaxy clusters.Comment: 11 pages, 12 figures, published in Astronomy and Astrophysic

    Stringing Spins and Spinning Strings

    Full text link
    We apply recently developed integrable spin chain and dilatation operator techniques in order to compute the planar one-loop anomalous dimensions for certain operators containing a large number of scalar fields in N =4 Super Yang-Mills. The first set of operators, belonging to the SO(6) representations [J,L-2J,J], interpolate smoothly between the BMN case of two impurities (J=2) and the extreme case where the number of impurities equals half the total number of fields (J=L/2). The result for this particular [J,0,J] operator is smaller than the anomalous dimension derived by Frolov and Tseytlin [hep-th/0304255] for a semiclassical string configuration which is the dual of a gauge invariant operator in the same representation. We then identify a second set of operators which also belong to [J,L-2J,J] representations, but which do not have a BMN limit. In this case the anomalous dimension of the [J,0,J] operator does match the Frolov-Tseytlin prediction. We also show that the fluctuation spectra for this [J,0,J] operator is consistent with the string prediction.Comment: 27 pages, 4 figures, LaTex; v2 reference added, typos fixe

    Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter

    Get PDF
    In this report, we describe the development of a modified adeno-associated virus (AAV) capsid and promoter for transduction of retinal ON-bipolar cells. The bipolar cells, which are post-synaptic to the photoreceptors, are important retinal targets for both basic and preclinical research. In particular, a therapeutic strategy under investigation for advanced forms of blindness involves using optogenetic molecules to render ON-bipolar cells light-sensitive. Currently, delivery of adequate levels of gene expression is a limiting step for this approach. The synthetic AAV capsid and promoter described here achieves high level of optogenetic transgene expression in ON-bipolar cells. This evokes high-frequency (∟100 Hz) spiking responses in ganglion cells of previously blind, rd1, mice. Our vector is a promising vehicle for further development toward potential clinical use

    Mol Vis

    Get PDF
    PURPOSE: To analyze in vivo the function of chicken acidic leucine-rich epidermal growth factor-like domain containing brain protein/Neuroglycan C (gene symbol: Cspg5) during retinal degeneration in the Rpe65(-)/(-) mouse model of Leber congenital amaurosis. METHODS: We resorted to mice with targeted deletions in the Cspg5 and retinal pigment epithelium protein of 65 kDa (Rpe65) genes (Cspg5(-)/(-)/Rpe65(-)/(-)). Cone degeneration was assessed with cone-specific peanut agglutinin staining. Transcriptional expression of rhodopsin (Rho), S-opsin (Opn1sw), M-opsin (Opn1mw), rod transducin alpha subunit (Gnat1), and cone transducin alpha subunit (Gnat2) genes was assessed with quantitative PCR from 2 weeks to 12 months. The retinal pigment epithelium (RPE) was analyzed at P14 with immunodetection of the retinol-binding protein membrane receptor Stra6. RESULTS: No differences in the progression of retinal degeneration were observed between the Rpe65(-)/(-) and Cspg5(-)/(-)/Rpe65(-)/(-) mice. No retinal phenotype was detected in the late postnatal and adult Cspg5(-)/(-) mice, when compared to the wild-type mice. CONCLUSIONS: Despite the previously reported upregulation of Cspg5 during retinal degeneration in Rpe65(-)/(-) mice, no protective effect or any involvement of Cspg5 in disease progression was identified

    The Cyanobacterial Hepatotoxin Microcystin Binds to Proteins and Increases the Fitness of Microcystis under Oxidative Stress Conditions

    Get PDF
    Microcystins are cyanobacterial toxins that represent a serious threat to drinking water and recreational lakes worldwide. Here, we show that microcystin fulfils an important function within cells of its natural producer Microcystis. The microcystin deficient mutant ΔmcyB showed significant changes in the accumulation of proteins, including several enzymes of the Calvin cycle, phycobiliproteins and two NADPH-dependent reductases. We have discovered that microcystin binds to a number of these proteins in vivo and that the binding is strongly enhanced under high light and oxidative stress conditions. The nature of this binding was studied using extracts of a microcystin-deficient mutant in vitro. The data obtained provided clear evidence for a covalent interaction of the toxin with cysteine residues of proteins. A detailed investigation of one of the binding partners, the large subunit of RubisCO showed a lower susceptibility to proteases in the presence of microcystin in the wild type. Finally, the mutant defective in microcystin production exhibited a clearly increased sensitivity under high light conditions and after hydrogen peroxide treatment. Taken together, our data suggest a protein-modulating role for microcystin within the producing cell, which represents a new addition to the catalogue of functions that have been discussed for microbial secondary metabolites
    • …
    corecore