1,089 research outputs found

    Microfluidic in-line dynamic light scattering with a commercial fibre optic system.

    Get PDF
    We report the coupling of dynamic light scattering (DLS) in microfluidics, using a contact-free fibre-optic system, enabling the under-flow characterisation of a range of solutions, dispersions, and structured fluids. The system is evaluated and validated with model systems, specifically micellar and (dilute) polymer solutions, and colloidal dispersions of different radii (∼1-100 nm). A systematic method of flow-DLS analysis is examined as a function of flow velocity (0-16 cm s-1), and considerations of the relative contribution of 'transit' and 'Brownian' terms enable the identification of regions where (i) a quiescent approximation suffices, (ii) the flow-DLS framework holds, as well as (iii) where deviations are found, until eventually (iv) the convection dominates. We investigate practically relevant, robust setups, namely that of a capillary connected to microdevice, as well as direct measurement on a glass microdevice, examining the role of capillary dimensions and challenges of optical alignment. We conclude with a demonstration of a continuous flow measurement of a binary surfactant/salt solution, whose micellar dimensions vary with composition, characterised with hundreds of data points (every ∼5 s) and adequate statistics, within a few minutes

    What has finite element analysis taught us about diabetic foot disease and its management?:a systematic review

    Get PDF
    Over the past two decades finite element (FE) analysis has become a popular tool for researchers seeking to simulate the biomechanics of the healthy and diabetic foot. The primary aims of these simulations have been to improve our understanding of the foot's complicated mechanical loading in health and disease and to inform interventions designed to prevent plantar ulceration, a major complication of diabetes. This article provides a systematic review and summary of the findings from FE analysis-based computational simulations of the diabetic foot.A systematic literature search was carried out and 31 relevant articles were identified covering three primary themes: methodological aspects relevant to modelling the diabetic foot; investigations of the pathomechanics of the diabetic foot; and simulation-based design of interventions to reduce ulceration risk.Methodological studies illustrated appropriate use of FE analysis for simulation of foot mechanics, incorporating nonlinear tissue mechanics, contact and rigid body movements. FE studies of pathomechanics have provided estimates of internal soft tissue stresses, and suggest that such stresses may often be considerably larger than those measured at the plantar surface and are proportionally greater in the diabetic foot compared to controls. FE analysis allowed evaluation of insole performance and development of new insole designs, footwear and corrective surgery to effectively provide intervention strategies. The technique also presents the opportunity to simulate the effect of changes associated with the diabetic foot on non-mechanical factors such as blood supply to local tissues.While significant advancement in diabetic foot research has been made possible by the use of FE analysis, translational utility of this powerful tool for routine clinical care at the patient level requires adoption of cost-effective (both in terms of labour and computation) and reliable approaches with clear clinical validity for decision making

    In vitro effects of zinc on the cytokine production from peripheral blood mononuclear cells in patients with zinc allergy.

    Get PDF
    Metals, such as nickel, cobalt, chromium and zinc, are ubiquitous in the environment. Systemic reactions, including hand dermatitis and generalized eczematous reactions, can be caused by the dietary ingestion of metals. In this study, we aimed to determine whether the cytokine production from peripheral blood mononuclear cells (PBMCs) obtained from zinc allergy patients can be used as a sensitive marker to investigate zinc-allergic contact dermatitis. The diagnosis of sensitivity to metal was made based on the results of a metal patch test. The PBMCs were stimulated with various concentrations (5-100 μM) of zinc sulfate (ZnSO4) for 24 h. The culture supernatants were collected and analyzed using ELISA for measurement of the cytokine production. The levels of IFN-γ, TNF-α, IL-1β, IL-5, IL-13 and MIF were significantly higher in the zinc-allergic patients (n = 5) than in the healthy controls (n = 5) at 100 μM of ZnSO4 stimulation. Although, patch testing is considered as standard test to diagnose metal allergy but false-positive and -negative reactions may limit its use in conditions of existing dermatitis. Therefore, this study suggest that in support of patch testing the determination of cytokine production using PBMCs cultures would be helpful for making an early diagnosis of such conditions

    Exploring local knowledge and perceptions on zoonoses among pastoralists in northern and eastern Tanzania

    Get PDF
    Background: Zoonoses account for the most commonly reported emerging and re-emerging infectious diseases in Sub-Saharan Africa. However, there is limited knowledge on how pastoral communities perceive zoonoses in relation to their livelihoods, culture and their wider ecology. This study was carried out to explore local knowledge and perceptions on zoonoses among pastoralists in Tanzania. Methodology and principal findings: This study involved pastoralists in Ngorongoro district in northern Tanzania and Kibaha and Bagamoyo districts in eastern Tanzania. Qualitative methods of focus group discussions, participatory epidemiology and interviews were used. A total of 223 people were involved in the study. Among the pastoralists, there was no specific term in their local language that describes zoonosis. Pastoralists from northern Tanzania possessed a higher understanding on the existence of a number of zoonoses than their eastern districts' counterparts. Understanding of zoonoses could be categorized into two broad groups: a local syndromic framework, whereby specific symptoms of a particular illness in humans concurred with symptoms in animals, and the biomedical framework, where a case definition is supported by diagnostic tests. Some pastoralists understand the possibility of some infections that could cross over to humans from animals but harm from these are generally tolerated and are not considered as threats. A number of social and cultural practices aimed at maintaining specific cultural functions including social cohesion and rites of passage involve animal products, which present zoonotic risk. Conclusions: These findings show how zoonoses are locally understood, and how epidemiology and biomedicine are shaping pastoralists perceptions to zoonoses. Evidence is needed to understand better the true burden and impact of zoonoses in these communities. More studies are needed that seek to clarify the common understanding of zoonoses that could be used to guide effective and locally relevant interventions. Such studies should consider in their approaches the pastoralists' wider social, cultural and economic set up

    Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses.

    Get PDF
    Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment resistance1-4. This phenomenon has been implicated in chemorefractory small cell lung cancer and resistance to targeted therapies5-8, but remains incompletely defined. Here, we identify a subclass of endogenous retroviruses (ERVs) that engages innate immune signaling in these cells. Stimulated 3 prime antisense retroviral coding sequences (SPARCS) are oriented inversely in 3' untranslated regions of specific genes enriched for regulation by STAT1 and EZH2. Derepression of these loci results in double-stranded RNA generation following IFN-γ exposure due to bi-directional transcription from the STAT1-activated gene promoter and the 5' long terminal repeat of the antisense ERV. Engagement of MAVS and STING activates downstream TBK1, IRF3, and STAT1 signaling, sustaining a positive feedback loop. SPARCS induction in human tumors is tightly associated with major histocompatibility complex class 1 expression, mesenchymal markers, and downregulation of chromatin modifying enzymes, including EZH2. Analysis of cell lines with high inducible SPARCS expression reveals strong association with an AXL/MET-positive mesenchymal cell state. While SPARCS-high tumors are immune infiltrated, they also exhibit multiple features of an immune-suppressed microenviroment. Together, these data unveil a subclass of ERVs whose derepression triggers pathologic innate immune signaling in cancer, with important implications for cancer immunotherapy

    Transduction of SIV-Specific TCR Genes into Rhesus Macaque CD8+ T Cells Conveys the Ability to Suppress SIV Replication

    Get PDF
    The SIV/rhesus macaque model for HIV/AIDS is a powerful system for examining the contribution of T cells in the control of AIDS viruses. To better our understanding of CD8(+) T-cell control of SIV replication in CD4(+) T cells, we asked whether TCRs isolated from rhesus macaque CD8(+) T-cell clones that exhibited varying abilities to suppress SIV replication could convey their suppressive properties to CD8(+) T cells obtained from an uninfected/unvaccinated animal.We transferred SIV-specific TCR genes isolated from rhesus macaque CD8(+) T-cell clones with varying abilities to suppress SIV replication in vitro into CD8(+) T cells obtained from an uninfected animal by retroviral transduction. After sorting and expansion, transduced CD8(+) T-cell lines were obtained that specifically bound their cognate SIV tetramer. These cell lines displayed appropriate effector function and specificity, expressing intracellular IFNγ upon peptide stimulation. Importantly, the SIV suppression properties of the transduced cell lines mirrored those of the original TCR donor clones: cell lines expressing TCRs transferred from highly suppressive clones effectively reduced wild-type SIV replication, while expression of a non-suppressing TCR failed to reduce the spread of virus. However, all TCRs were able to suppress the replication of an SIV mutant that did not downregulate MHC-I, recapitulating the properties of their donor clones.Our results show that antigen-specific SIV suppression can be transferred between allogenic T cells simply by TCR gene transfer. This advance provides a platform for examining the contributions of TCRs versus the intrinsic effector characteristics of T-cell clones in virus suppression. Additionally, this approach can be applied to develop non-human primate models to evaluate adoptive T-cell transfer therapy for AIDS and other diseases

    A Minimal Threshold of c-di-GMP Is Essential for Fruiting Body Formation and Sporulation in Myxococcus xanthus

    Get PDF
    Generally, the second messenger bis-(3’-5’)-cyclic dimeric GMP (c-di-GMP) regulates the switch between motile and sessile lifestyles in bacteria. Here, we show that c-di-GMP is an essential regulator of multicellular development in the social bacterium Myxococcus xanthus. In response to starvation, M. xanthus initiates a developmental program that culminates in formation of spore-filled fruiting bodies. We show that c-di-GMP accumulates at elevated levels during development and that this increase is essential for completion of development whereas excess c-di-GMP does not interfere with development. MXAN3735 (renamed DmxB) is identified as a diguanylate cyclase that only functions during development and is responsible for this increased c-di-GMP accumulation. DmxB synthesis is induced in response to starvation, thereby restricting DmxB activity to development. DmxB is essential for development and functions downstream of the Dif chemosensory system to stimulate exopolysaccharide accumulation by inducing transcription of a subset of the genes encoding proteins involved in exopolysaccharide synthesis. The developmental defects in the dmxB mutant are non-cell autonomous and rescued by co-development with a strain proficient in exopolysaccharide synthesis, suggesting reduced exopolysaccharide accumulation as the causative defect in this mutant. The NtrC-like transcriptional regulator EpsI/Nla24, which is required for exopolysaccharide accumulation, is identified as a c-diGMP receptor, and thus a putative target for DmxB generated c-di-GMP. Because DmxB can be—at least partially—functionally replaced by a heterologous diguanylate cyclase, these results altogether suggest a model in which a minimum threshold level of c-di-GMP is essential for the successful completion of multicellular development in M. xanthus

    Adaptive remodeling of the bacterial proteome by specific ribosomal modification regulates Pseudomonas infection and niche colonisation

    Get PDF
    Post-transcriptional control of protein abundance is a highly important, underexplored regulatory process by which organisms respond to their environments. Here we describe an important and previously unidentified regulatory pathway involving the ribosomal modification protein RimK, its regulator proteins RimA and RimB, and the widespread bacterial second messenger cyclic-di-GMP (cdG). Disruption of rimK affects motility and surface attachment in pathogenic and commensal Pseudomonas species, with rimK deletion significantly compromising rhizosphere colonisation by the commensal soil bacterium P. fluorescens, and plant infection by the pathogens P. syringae and P. aeruginosa. RimK functions as an ATP-dependent glutamyl ligase, adding glutamate residues to the C-terminus of ribosomal protein RpsF and inducing specific effects on both ribosome protein complement and function. Deletion of rimK in P. fluorescens leads to markedly reduced levels of multiple ribosomal proteins, and also of the key translational regulator Hfq. In turn, reduced Hfq levels induce specific downstream proteomic changes, with significant increases in multiple ABC transporters, stress response proteins and non-ribosomal peptide synthetases seen for both ΔrimK and Δhfq mutants. The activity of RimK is itself controlled by interactions with RimA, RimB and cdG. We propose that control of RimK activity represents a novel regulatory mechanism that dynamically influences interactions between bacteria and their hosts; translating environmental pressures into dynamic ribosomal changes, and consequently to an adaptive remodeling of the bacterial proteome

    Morphometric Relationship, Phylogenetic Correlation, and Character Evolution in the Species-Rich Genus Aphis (Hemiptera: Aphididae)

    Get PDF
    The species-rich genus Aphis consists of more than 500 species, many of them host-specific on a wide range of plants, yet very similar in general appearance due to convergence toward particular morphological types. Most species have been historically clustered into four main phenotypic groups (gossypii, craccivora, fabae, and spiraecola groups). To confirm the morphological hypotheses between these groups and to examine the characteristics that determine them, multivariate morphometric analyses were performed using 28 characters measured/counted from 40 species. To infer whether the morphological relationships are correlated with the genetic relationships, we compared the morphometric dataset with a phylogeny reconstructed from the combined dataset of three mtDNA and one nuclear DNA regions.Based on a comparison of morphological and molecular datasets, we confirmed morphological reduction or regression in the gossypii group unlike in related groups. Most morphological characteristics of the gossypii group were less variable than for the other groups. Due to these, the gossypii group could be morphologically well separated from the craccivora, fabae, and spiraecola groups. In addition, the correlation of the rates of evolution between morphological and DNA datasets was highly significant in their diversification.The morphological separation between the gossypii group and the other species-groups are congruent with their phylogenetic relationships. Analysis of trait evolution revealed that the morphological traits found to be significant based on the morphometric analyses were confidently correlated with the phylogeny. The dominant patterns of trait evolution resulting in increased rates of short branches and temporally later evolution are likely suitable for the modality of Aphis speciation because they have adapted species-specifically, rapidly, and more recently on many different host plants

    DNA Sequence Analysis of SLC26A5, Encoding Prestin, in a Patient-Control Cohort: Identification of Fourteen Novel DNA Sequence Variations

    Get PDF
    Prestin, encoded by the gene SLC26A5, is a transmembrane protein of the cochlear outer hair cell (OHC). Prestin is required for the somatic electromotile activity of OHCs, which is absent in OHCs and causes severe hearing impairment in mice lacking prestin. In humans, the role of sequence variations in SLC26A5 in hearing loss is less clear. Although prestin is expected to be required for functional human OHCs, the clinical significance of reported putative mutant alleles in humans is uncertain.To explore the hypothesis that SLC26A5 may act as a modifier gene, affecting the severity of hearing loss caused by an independent etiology, a patient-control cohort was screened for DNA sequence variations in SLC26A5 using sequencing and allele specific methods. Patients in this study carried known pathogenic or controversial sequence variations in GJB2, encoding Connexin 26, or confirmed or suspected sequence variations in SLC26A5; controls included four ethnic populations. Twenty-three different DNA sequence variations in SLC26A5, 14 of which are novel, were observed: 4 novel sequence variations were found exclusively among patients; 7 novel sequence variations were found exclusively among controls; and, 12 sequence variations, 3 of which are novel, were found in both patients and controls. Twenty-one of the 23 DNA sequence variations were located in non-coding regions of SLC26A5. Two coding sequence variations, both novel, were observed only in patients and predict a silent change, p.S434S, and an amino acid substitution, p.I663V. In silico analysis of the p.I663V amino acid variation suggested this variant might be benign. Using Fisher's exact test, no statistically significant difference was observed between patients and controls in the frequency of the identified DNA sequence variations. Haplotype analysis using HaploView 4.0 software revealed the same predominant haplotype in patients and controls and derived haplotype blocks in the patient-control cohort similar to those generated from the International HapMap Project.Although these data fail to support a hypothesis that SLC26A5 acts as a modifier gene of GJB2-related hearing loss, the sample size is small and investigation of a larger population might be more informative. The 14 novel DNA sequence variations in SLC26A5 reported here will serve as useful research tools for future studies of prestin
    • …
    corecore