4,582 research outputs found

    Ablation of neuropilin 1 from glioma-associated microglia and macrophages slows tumor progression

    Get PDF
    Gliomas are the most commonly diagnosed primary tumors of the central nervous system (CNS). Median times of survival are dismal regardless of the treatment approach, underlying the need to develop more effective therapies. Modulation of the immune system is a promising strategy as innate and adaptive immunity play important roles in cancer progression. Glioma associated microglia and macrophages (GAMs) can comprise over 30% of the cells in glioma biopsies. Gliomas secrete cytokines that suppress the anti-tumorigenic properties of GAMs, causing them to secrete factors that support the tumor's spread and growth. Neuropilin 1 (Nrp1) is a transmembrane receptor that in mice both amplifies pro-angiogenic signaling in the tumor microenvironment and affects behavior of innate immune cells. Using a Cre-lox system, we generated mice that lack expression of Nrp1 in GAMs. We demonstrate, using an in vivo orthotopic glioma model, that tumors in mice with Nrp1-deficient GAMs exhibit less vascularity, grow at a slower pace, and are populated by increased numbers of anti-tumorigenic GAMs. Moreover, glioma survival times in mice with Nrp1-deficient GAMs were significantly longer. Treating wild-type mice with a small molecule inhibitor of Nrp1's b1 domain, EG00229, which we show here is selective for Nrp1 over Nrp2, yielded an identical outcome. Nrp1-deficient or EG00229-treated wild-type microglia exhibited a shift towards anti-tumorigenicity as evident by altered inflammatory marker profiles in vivo and decreased SMAD2/3 activation when conditioned in the presence of glioma-derived factors. These results provide support for the proposal that pharmacological inhibition of Nrp1 constitutes a potential strategy for suppressing glioma progression

    Vertical leakage mechanism in GaN on Si high electron mobility transistor buffer layers

    Get PDF
    Control of leakage currents in the buffer layers of GaN based transistors on Si substrates is vital for the demonstration of high performance devices. Here, we show that the growth conditions during the metal organic chemical vapour deposition growth of the graded AlGaN strain relief layers (SRLs) can significantly influence the vertical leakage. Using scanning capacitance microscopy, secondary ion mass spectrometry, and transmission electron microscopy, we investigate the origins of leakage paths and show that they result from the preferential incorporation of oxygen impurities on the side wall facets of the inverted hexagonal pyramidal pits which can occur during the growth of the graded AlGaN SRL. We also show that when 2D growth of the AlGaN SRL is maintained a significant increase in the breakdown voltage can be achieved even in much thinner buffer layer structures. These results demonstrate the importance of controlling the morphology of the high electron mobility transistor buffer layer as even at a very low density the leakage paths identified would provide leakage paths in large area devices.This work was funded by the Engineering and Physical Sciences Research Council under Grant Code Nos. EP/K014471/1 and EP/N01202X/1 and the European Research Council under the European Community's Seventh Framework Programme Grant Agreement No. 279361 (MACONS)

    Influence of prohexadione-calcium, trinexapac-ethyl and hexaconazole on lodging characteristic and gibberellin biosynthesis of rice (Oryza sativa L.)

    Get PDF
    We investigated the influence of prohexadione-calcium (Pro-Ca), trinexapac-ethyl (TNE) and hexaconazole (HX) on lodging and gibberellin (GA) biosynthesis pathway of rice cultivar, Hwayeongbyeo. It was observed that these novel synthetic growth retardants suppressed lodging of rice under field conditions through blocking GA biosynthesis pathway. These growth retarding chemicals were applied at basic (20 uM) and elevated (40 uM) rates either 10 days before heading (10 DBH) or 5 days before heading (5 DBH). We found that Pro-Ca, TNE and their combined application (Pro-Ca + TNE) were most effective in decreasing rice length and lodging index, when applied at 10 DBH. Similarly, the endogenous bioactive GA1 contents of rice significantly declined with application of Pro-Ca, TNE and Pro-Ca + TNE, while they were less effected by basic and elevated rates of HX as compared to the control. The growth retardants were more effective in decreasing rice lodging and blocking GA biosynthesis when applied in elevated rates. The levels of the endogenous gibberellins in rice shoots were measured by GC/MS-SIM using 2H2-labeled gibberellins as internal standards. Effect of these synthetic chemicals on growth and GA inhibition were stronger initially but eroded rapidly under field conditions. It was thus concluded that Pro-Ca and TNE were most effective in reducing plant length and suppressing lodging of rice crop under field conditions, where lodging is a major constraint to higher productivity.Key words: Growth retardants, plant growth, gibberellin biosynthesis, lodging index, rice

    Growth and Differentiation of the Larval Mosquito Midgut

    Get PDF
    Factors affecting larval growth and nutrition have consequences on adult fecundity. Since the mosquito larval midgut is the primary organ of digestion and nutrient absorption, factors that affect the growth and development of the midgut may have potential consequences on the reproductive potential of the adult. To gain a better understanding of mosquito midgut development the growth and metamorphic remodeling of the Aedes aegypti L. and Culex pipiens L. (Diptera: Culicidae) midguts were investigated. Cytological evidence was obtained suggesting that, in both the anterior and posterior Ae. aegypti larval midgut, diploid regenerative cells give rise to new endoreplicating cells that significantly contribute to the growth and metabolism of the midgut. This hypothesis was supported by BrdU incorporation studies showing that diploid cells, as well as large and small endoreplicating cells, synthesize DNA during the 2nd, 3rd and 4th instars. Cytological studies of the Cx. pipiens larval midgut suggest that anterior midgut growth in this species is primarily by cell enlargement. To study metamorphic remodeling of the midgut, DNA synthesis in Ae. aegypti 4th instar midguts was followed by using 5-bromo-2-deoxyuridine (BrdU) incorporation. During the 24 hr period after the last larval-larval molt both endoreplicating and diploid cells incorporate BrdU. After the critical weight is achieved, endoreplicating cell BrdU incorporation gradually ceases while diploid cells continue to replicate. The period of maximum diploid cell incorporation correlated with the period of maximum ecdysone titer

    Ablation of neuropilin 1 from glioma-associated microglia and macrophages slows tumor progression

    Get PDF

    Intragenic DNA methylation: implications of this epigenetic mechanism for cancer research

    Get PDF
    Epigenetics is the study of all mechanisms that regulate gene transcription and genome stability that are maintained throughout the cell division, but do not include the DNA sequence itself. The best-studied epigenetic mechanism to date is DNA methylation, where methyl groups are added to the cytosine base within cytosine–guanine dinucleotides (CpG sites). CpGs are frequently clustered in high density (CpG islands (CGIs)) at the promoter of over half of all genes. Current knowledge of transcriptional regulation by DNA methylation centres on its role at the promoter where unmethylated CGIs are present at most actively transcribed genes, whereas hypermethylation of the promoter results in gene repression. Over the last 5 years, research has gradually incorporated a broader understanding that methylation patterns across the gene (so-called intragenic or gene body methylation) may have a role in transcriptional regulation and efficiency. Numerous genome-wide DNA methylation profiling studies now support this notion, although whether DNA methylation patterns are a cause or consequence of other regulatory mechanisms is not yet clear. This review will examine the evidence for the function of intragenic methylation in gene transcription, and discuss the significance of this in carcinogenesis and for the future use of therapies targeted against DNA methylation

    Inkjet Printing Based Mono-layered Photonic Crystal Patterning for Anti-counterfeiting Structural Colors

    Get PDF
    Photonic crystal structures can be created to manipulate electromagnetic waves so that many studies have focused on designing photonic band-gaps for various applications including sensors, LEDs, lasers, and optical fibers. Here, we show that mono-layered, self-assembled photonic crystals (SAPCs) fabricated by using an inkjet printer exhibit extremely weak structural colors and multiple colorful holograms so that they can be utilized in anti-counterfeit measures. We demonstrate that SAPC patterns on a white background are covert under daylight, such that pattern detection can be avoided, but they become overt in a simple manner under strong illumination with smartphone flash light and/or on a black background, showing remarkable potential for anti-counterfeit techniques. Besides, we demonstrate that SAPCs yield different RGB histograms that depend on viewing angles and pattern densities, thus enhancing their cryptographic capabilities. Hence, the structural colorations designed by inkjet printers would not only produce optical holograms for the simple authentication of many items and products but also enable a high-secure anti-counterfeit techniqueope

    Does owning a pet protect older people against loneliness?

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.Pet ownership is thought to make a positive contribution to health, health behaviours and the general well-being of older people. More specifically pet ownership is often proposed as a solution to the problem of loneliness in later life and specific 'pet based' interventions have been developed to combat loneliness. However the evidence to support this relationship is slim and it is assumed that pet ownership is a protection against loneliness rather than a response to loneliness. The aim of this paper is to examine the association between pet ownership and loneliness by exploring if pet ownership is a response to, or protection against, loneliness using Waves 0-5 from the English Longitudinal Study of Ageing (ELSA)

    KCC2 is required for the survival of mature neurons but not for their development

    Get PDF
    The K+/Cl- co-transporter KCC2 (SLC12A5) allows mature neurons in the CNS to maintain low intracellular Cl- levels that are critical in mediating fast hyperpolarizing synaptic inhibition via type A Ξ³-aminobutyric acid receptors (GABAARs). In accordance with this, compromised KCC2 activity results in seizures, but whether such deficits directly contribute to the subsequent changes in neuronal structure and viability that lead to epileptogenesis, remains to be assessed. Canonical hyperpolarizing GABAAR currents develop postnatally which reflect a progressive increase in KCC2 expression levels and activity. To investigate the role that KCC2 plays in regulating neuronal viability and architecture we have conditionally ablated KCC2 expression in developing and mature neurons. Decreasing KCC2 expression in mature neurons resulted in the rapid activation of the extrinsic apoptotic pathway. Intriguingly, direct pharmacological inhibition of KCC2 in mature neurons was sufficient to rapidly induce apoptosis, an effect that was not abrogated via blockade of neuronal depolarization using Tetrodotoxin (TTX). In contrast, ablating KCC2 expression in immature neurons had no discernable effects on their subsequent development, arborization or dendritic structure. However, removing KCC2 in immature neurons was sufficient to ablate the subsequent postnatal development of hyperpolarizing GABAAR currents. Collectively, our results demonstrate that KCC2 plays a critical role in neuronal survival by limiting apoptosis, and mature neurons are highly sensitive to the loss of KCC2 function. In contrast, KCC2 appears to play a minimal role in mediating neuronal development or architecture

    Multiple ATR-Chk1 Pathway Proteins Preferentially Associate with Checkpoint-Inducing DNA Substrates

    Get PDF
    The ATR-Chk1 DNA damage checkpoint pathway is a critical regulator of the cellular response to DNA damage and replication stress in human cells. The variety of environmental, chemotherapeutic, and carcinogenic agents that activate this signal transduction pathway do so primarily through the formation of bulky adducts in DNA and subsequent effects on DNA replication fork progression. Because there are many protein-protein and protein-DNA interactions proposed to be involved in activation and/or maintenance of ATR-Chk1 signaling in vivo, we systematically analyzed the association of a number of ATR-Chk1 pathway proteins with relevant checkpoint-inducing DNA structures in vitro. These DNA substrates included single-stranded DNA, branched DNA, and bulky adduct-containing DNA. We found that many checkpoint proteins show a preference for single-stranded, branched, and bulky adduct-containing DNA in comparison to undamaged, double-stranded DNA. We additionally found that the association of checkpoint proteins with bulky DNA damage relative to undamaged DNA was strongly influenced by the ionic strength of the binding reaction. Interestingly, among the checkpoint proteins analyzed the checkpoint mediator proteins Tipin and Claspin showed the greatest differential affinity for checkpoint-inducing DNA structures. We conclude that the association and accumulation of multiple checkpoint proteins with DNA structures indicative of DNA damage and replication stress likely contribute to optimal ATR-Chk1 DNA damage checkpoint responses
    • …
    corecore