107 research outputs found
Large Fragment Pre-S Deletion and High Viral Load Independently Predict Hepatitis B Relapse after Liver Transplantation
Hepatitis B virus (HBV) associated end-stage liver diseases are the leading causes of liver transplantation (LT) in Taiwan. Relapse of hepatitis B occurs after LT, raising the risk of graft failure and reducing patient survival. Although several oral antiviral agents have been approved for anti-HBV treatment, lamivudine (LAM) remained to be the most widely used preventive regimen in Taiwan. While several clinical predictors have been identified for hepatitis B relapse, the predictive roles of the histopathological characteristics in liver explants as well as the genotypic features of the viruses in pre-LT serum samples have not been assessed. Between September 2002 and August 2009, 150 consecutive hepatitis B surface antigen (HBsAg) positive patients undergoing LT were included for outcome analysis following assessment of the clinicopathological and virological factors prior to LT. Kaplan-Meier analyses discovered that pre-operative LAM treatment ≤3 months; membranous distribution and higher expression of tissue HBsAg in liver explants; preoperative viral load ≧106 copies/ml; and presence of large fragment (>100 base pairs) pre-S deletion (LFpreSDel) correlated significantly with hepatitis B relapse. Multivariate Cox regression analysis showed that the presence of LFpreSDel (P = 0.001) and viral load ≧106 copies/mL (P = 0.023) were independent predictors for hepatitis B relapse. In conclusion, besides high viral load, LFpreSDel mutation is an important independent predictor for hepatitis B relapse after LT. More aggressive preventive strategies should be applied for patients carrying these risk factors
The GTPase Activating Rap/RanGAP Domain-Like 1 Gene Is Associated with Chicken Reproductive Traits
BACKGROUND: Abundant evidence indicates that chicken reproduction is strictly regulated by the hypothalamic-pituitary-gonad (HPG) axis, and the genes included in the HPG axis have been studied extensively. However, the question remains as to whether any other genes outside of the HPG system are involved in regulating chicken reproduction. The present study was aimed to identify, on a genome-wide level, novel genes associated with chicken reproductive traits. METHODOLOGY/PRINCIPAL FINDING: Suppressive subtractive hybridization (SSH), genome-wide association study (GWAS), and gene-centric GWAS were used to identify novel genes underlying chicken reproduction. Single marker-trait association analysis with a large population and allelic frequency spectrum analysis were used to confirm the effects of candidate genes. Using two full-sib Ningdu Sanhuang (NDH) chickens, GARNL1 was identified as a candidate gene involved in chicken broodiness by SSH analysis. Its expression levels in the hypothalamus and pituitary were significantly higher in brooding chickens than in non-brooding chickens. GWAS analysis with a NDH two tail sample showed that 2802 SNPs were significantly associated with egg number at 300 d of age (EN300). Among the 2802 SNPs, 2 SNPs composed a block overlapping the GARNL1 gene. The gene-centric GWAS analysis with another two tail sample of NDH showed that GARNL1 was strongly associated with EN300 and age at first egg (AFE). Single marker-trait association analysis in 1301 female NDH chickens confirmed that variation in this gene was related to EN300 and AFE. The allelic frequency spectrum of the SNP rs15700989 among 5 different populations supported the above associations. Western blotting, RT-PCR, and qPCR were used to analyze alternative splicing of the GARNL1 gene. RT-PCR detected 5 transcripts and revealed that the transcript, which has a 141 bp insertion, was expressed in a tissue-specific manner. CONCLUSIONS/SIGNIFICANCE: Our findings demonstrate that the GARNL1 gene contributes to chicken reproductive traits
Effectiveness of a home-based exercise program on anthropometric and metabolic changes among school cooks
Abstract The scope of this study was to evaluate the anthropometric and metabolic changes after low intensity home-based exercise. In the school year of 2007, 95 school cooks in the city of Niteroi (State of Rio de Janeiro, Brazil) were randomly assigned to one of the following groups: home-based exercise (n = 47) or control group (n = 48). The home-based exercise program was performed three times a week, during 40 minutes at moderate intensity. Anthropometric variables were collected at the baseline and after 4 and 8 months, whereas biochemical and individual food intake were measured at the baseline and after 8 months. Energy expenditure was evaluated only at the baseline. The home-based exercise group exhibited a greater weight loss (-0.9 vs. -0.2; p = 0.05) in comparison with controls during the follow-up and the same pattern was found for BMI (-0.1 vs. +0.1; p = 0.07), although without statistical significance. Exercise showed no effects on waist circumference, lipid profile and glucose. In conclusion, greater weight loss was observed in the group that performed low intensity home-based exercise and this strategy can assist in body weight control even without alterations in terms of lipids and glucose
Nuclear Medicine Imaging Tracers for Neurology
Tracers to investigate neurological disorders with positron emission tomography (PET) or single-photon emission computed tomography (SPECT) have found many applications. Several molecular targets can be studied in the human brain in vivo, both in health and disease. Initially, most attention was given to tracers for translocator protein (TSPO), deposition of beta-amyloid, and the dopaminergic system. Many clinical studies have been published with application of a variety of tracers for these targets. During the past few years, more tracers have reached the stage of human studies such as imaging agents for tau protein, P2X7 receptor, SV2A receptor, and the cholinergic system. Other targets of interest that have been studied in man to a lesser extent are N-methyl-d-aspartic acid (NMDA), serotonergic, adenosine, gamma-aminobutyric acid (GABA), sigma, opioid, and metabotropic glutamate subtype 5 (mGlu5) receptors. In addition, several transporter systems have received a great deal of attention. Many tracers for new molecular targets are under development and may open new horizons in the future. Most PET tracers for the brain were initially labeled with 11C but were later replaced by 18F-labeled analogs, since this radionuclide enables longer scanning protocols, dissemination to other hospitals, and commercialization. This initial chapter will highlight PET tracers that have already reached the state of human application.</p
Measuring serotonin synthesis: from conventional methods to PET tracers and their (pre)clinical implications
The serotonergic system of the brain is complex, with an extensive innervation pattern covering all brain regions and endowed with at least 15 different receptors (each with their particular distribution patterns), specific reuptake mechanisms and synthetic processes. Many aspects of the functioning of the serotonergic system are still unclear, partially because of the difficulty of measuring physiological processes in the living brain. In this review we give an overview of the conventional methods of measuring serotonin synthesis and methods using positron emission tomography (PET) tracers, more specifically with respect to serotonergic function in affective disorders. Conventional methods are invasive and do not directly measure synthesis rates. Although they may give insight into turnover rates, a more direct measurement may be preferred. PET is a noninvasive technique which can trace metabolic processes, like serotonin synthesis. Tracers developed for this purpose are α-[11C]methyltryptophan ([11C]AMT) and 5-hydroxy-L-[β-11C]tryptophan ([11C]5-HTP). Both tracers have advantages and disadvantages. [11C]AMT can enter the kynurenine pathway under inflammatory conditions (and thus provide a false signal), but this tracer has been used in many studies leading to novel insights regarding antidepressant action. [11C]5-HTP is difficult to produce, but trapping of this compound may better represent serotonin synthesis. AMT and 5-HTP kinetics are differently affected by tryptophan depletion and changes of mood. This may indicate that both tracers are associated with different enzymatic processes. In conclusion, PET with radiolabelled substrates for the serotonergic pathway is the only direct way to detect changes of serotonin synthesis in the living brain
Global, Regional, and Country-Specific Lifetime Risks of Stroke, 1990 and 2016
BACKGROUND: The lifetime risk of stroke has been calculated in a limited number of selected populations. We sought to estimate the lifetime risk of stroke at the regional, country, and global level using data from a comprehensive study of the prevalence of major diseases. METHODS: We used the Global Burden of Disease (GBD) Study 2016 estimates of stroke incidence and the competing risks of death from any cause other than stroke to calculate the cumulative lifetime risks of first stroke, ischemic stroke, or hemorrhagic stroke among adults 25 years of age or older. Estimates of the lifetime risks in the years 1990 and 2016 were compared. Countries were categorized into quintiles of the sociodemographic index (SDI) used in the GBD Study, and the risks were compared across quintiles. Comparisons were made with the use of point estimates and uncertainty intervals representing the 2.5th and 97.5th percentiles around the estimate. RESULTS: The estimated global lifetime risk of stroke from the age of 25 years onward was 24.9% (95% uncertainty interval, 23.5 to 26.2); the risk among men was 24.7% (95% uncertainty interval, 23.3 to 26.0), and the risk among women was 25.1% (95% uncertainty interval, 23.7 to 26.5). The risk of ischemic stroke was 18.3%, and the risk of hemorrhagic stroke was 8.2%. In high-SDI, high-middle-SDI, and low-SDI countries, the estimated lifetime risk of stroke was 23.5%, 31.1% (highest risk), and 13.2% (lowest risk), respectively; the 95% uncertainty intervals did not overlap between these categories. The highest estimated lifetime risks of stroke according to GBD region were in East Asia (38.8%), Central Europe (31.7%), and Eastern Europe (31.6%), and the lowest risk was in eastern sub-Saharan Africa (11.8%). The mean global lifetime risk of stroke increased from 22.8% in 1990 to 24.9% in 2016, a relative increase of 8.9% (95% uncertainty interval, 6.2 to 11.5); the competing risk of death from any cause other than stroke was considered in this calculation. CONCLUSIONS: In 2016, the global lifetime risk of stroke from the age of 25 years onward was approximately 25% among both men and women. There was geographic variation in the lifetime risk of stroke, with the highest risks in East Asia, Central Europe, and Eastern Europe. (Funded by the Bill and Melinda Gates Foundation.)
Global, regional, and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016
Background Neurological disorders are increasingly recognised as major causes of death and disability worldwide. The aim of this analysis from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2016 is to provide the most comprehensive and up-to-date estimates of the global, regional, and national burden from neurological disorders. Methods We estimated prevalence, incidence, deaths, and disability-adjusted life-years (DALYs; the sum of years of life lost [YLLs] and years lived with disability [YLDs]) by age and sex for 15 neurological disorder categories (tetanus, meningitis, encephalitis, stroke, brain and other CNS cancers, traumatic brain injury, spinal cord injury, Alzheimer's disease and other dementias, Parkinson's disease, multiple sclerosis, motor neuron diseases, idiopathic epilepsy, migraine, tension-type headache, and a residual category for other less common neurological disorders) in 195 countries from 1990 to 2016. DisMod-MR 2.1, a Bayesian meta-regression tool, was the main method of estimation of prevalence and incidence, and the Cause of Death Ensemble model (CODEm) was used for mortality estimation. We quantified the contribution of 84 risks and combinations of risk to the disease estimates for the 15 neurological disorder categories using the GBD comparative risk assessment approach. Findings Globally, in 2016, neurological disorders were the leading cause of DALYs (276 million [95% UI 247–308]) and second leading cause of deaths (9·0 million [8·8–9·4]). The absolute number of deaths and DALYs from all neurological disorders combined increased (deaths by 39% [34–44] and DALYs by 15% [9–21]) whereas their age-standardised rates decreased (deaths by 28% [26–30] and DALYs by 27% [24–31]) between 1990 and 2016. The only neurological disorders that had a decrease in rates and absolute numbers of deaths and DALYs were tetanus, meningitis, and encephalitis. The four largest contributors of neurological DALYs were stroke (42·2% [38·6–46·1]), migraine (16·3% [11·7–20·8]), Alzheimer's and other dementias (10·4% [9·0–12·1]), and meningitis (7·9% [6·6–10·4]). For the combined neurological disorders, age-standardised DALY rates were significantly higher in males than in females (male-to-female ratio 1·12 [1·05–1·20]), but migraine, multiple sclerosis, and tension-type headache were more common and caused more burden in females, with male-to-female ratios of less than 0·7. The 84 risks quantified in GBD explain less than 10% of neurological disorder DALY burdens, except stroke, for which 88·8% (86·5–90·9) of DALYs are attributable to risk factors, and to a lesser extent Alzheimer's disease and other dementias (22·3% [11·8–35·1] of DALYs are risk attributable) and idiopathic epilepsy (14·1% [10·8–17·5] of DALYs are risk attributable). Interpretation Globally, the burden of neurological disorders, as measured by the absolute number of DALYs, continues to increase. As populations are growing and ageing, and the prevalence of major disabling neurological disorders steeply increases with age, governments will face increasing demand for treatment, rehabilitation, and support services for neurological disorders. The scarcity of established modifiable risks for most of the neurological burden demonstrates that new knowledge is required to develop effective prevention and treatment strategies
- …
