29 research outputs found

    Population genomics reveals that within-fungus polymorphism is common and maintained in populations of the mycorrhizal fungus Rhizophagus irregularis.

    Get PDF
    Arbuscular mycorrhizal (AM) fungi are symbionts of most plants, increasing plant growth and diversity. The model AM fungus Rhizophagus irregularis (isolate DAOM 197198) exhibits low within-fungus polymorphism. In contrast, another study reported high within-fungus variability. Experiments with other R. irregularis isolates suggest that within-fungus genetic variation can affect the fungal phenotype and plant growth, highlighting the biological importance of such variation. We investigated whether there is evidence of differing levels of within-fungus polymorphism in an R. irregularis population. We genotyped 20 isolates using restriction site-associated DNA sequencing and developed novel approaches for characterizing polymorphism among haploid nuclei. All isolates exhibited higher within-isolate poly-allelic single-nucleotide polymorphism (SNP) densities than DAOM 197198 in repeated and non-repeated sites mapped to the reference genome. Poly-allelic SNPs were independently confirmed. Allele frequencies within isolates deviated from diploids or tetraploids, or that expected for a strict dikaryote. Phylogeny based on poly-allelic sites was robust and mirrored the standard phylogeny. This indicates that within-fungus genetic variation is maintained in AM fungal populations. Our results predict a heterokaryotic state in the population, considerable differences in copy number variation among isolates and divergence among the copies, or aneuploidy in some isolates. The variation may be a combination of all of these hypotheses. Within-isolate genetic variation in R. irregularis leads to large differences in plant growth. Therefore, characterizing genomic variation within AM fungal populations is of major ecological importance

    Population genomics of marine zooplankton

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Bucklin, Ann et al. "Population Genomics of Marine Zooplankton." Population Genomics: Marine Organisms. Ed. Om P. Rajora and Marjorie Oleksiak. Springer, 2018. doi:10.1007/13836_2017_9.The exceptionally large population size and cosmopolitan biogeographic distribution that distinguish many – but not all – marine zooplankton species generate similarly exceptional patterns of population genetic and genomic diversity and structure. The phylogenetic diversity of zooplankton has slowed the application of population genomic approaches, due to lack of genomic resources for closelyrelated species and diversity of genomic architecture, including highly-replicated genomes of many crustaceans. Use of numerous genomic markers, especially single nucleotide polymorphisms (SNPs), is transforming our ability to analyze population genetics and connectivity of marine zooplankton, and providing new understanding and different answers than earlier analyses, which typically used mitochondrial DNA and microsatellite markers. Population genomic approaches have confirmed that, despite high dispersal potential, many zooplankton species exhibit genetic structuring among geographic populations, especially at large ocean-basin scales, and have revealed patterns and pathways of population connectivity that do not always track ocean circulation. Genomic and transcriptomic resources are critically needed to allow further examination of micro-evolution and local adaptation, including identification of genes that show evidence of selection. These new tools will also enable further examination of the significance of small-scale genetic heterogeneity of marine zooplankton, to discriminate genetic “noise” in large and patchy populations from local adaptation to environmental conditions and change.Support was provided by the US National Science Foundation to AB and RJO (PLR-1044982) and to RJO (MCB-1613856); support to IS and MC was provided by Nord University (Norway)

    Evolutionary potential and adaptation of Banksia attenuata (Proteaceae) to climate and fire regime in southwestern Australia, a global biodiversity hotspot

    Get PDF
    Substantial climate changes are evident across Australia, with declining rainfall and rising temperature in conjunction with frequent fires. Considerable species loss and range contractions have been predicted; however, our understanding of how genetic variation may promote adaptation in response to climate change remains uncertain. Here we characterized candidate genes associated with rainfall gradients, temperatures, and fire intervals through environmental association analysis. We found that overall population adaptive genetic variation was significantly affected by shortened fire intervals, whereas declining rainfall and rising temperature did not have a detectable influence. Candidate SNPs associated with rainfall and high temperature were diverse, whereas SNPs associated with specific fire intervals were mainly fixed in one allele. Gene annotation further revealed four genes with functions in stress tolerance, the regulation of stomatal opening and closure, energy use, and morphogenesis with adaptation to climate and fire intervals. B. attenuata may tolerate further changes in rainfall and temperature through evolutionary adaptations based on their adaptive genetic variation. However, the capacity to survive future climate change may be compromised by changes in the fire regime

    Credible knowledge: A pilot evaluation of a modified GRADE method using parent-implemented interventions for children with autism

    Get PDF
    Abstract Background Decision-making in child and youth mental health (CYMH) care requires recommendations that are developed through an efficient and effective method and are based on credible knowledge. Credible knowledge is informed by two sources: scientific evidence, and practice-based evidence, that reflects the "real world" experience of service providers. Current approaches to developing these recommendations in relation to CYMH will typically include evidence from one source or the other but do not have an objective method to combine the two. To this end, a modified version of the Grading Recommendations Assessment, Development and Evaluation (GRADE) approach was pilot-tested, a novel method for the CYMH field. Methods GRADE has an explicit methodology that relies on input from scientific evidence as well as a panel of experts. The panel established the quality of evidence and derived detailed recommendations regarding the organization and delivery of mental health care for children and youth or their caregivers. In this study a modified GRADE method was used to provide precise recommendations based on a specific CYMH question (i.e. What is the current credible knowledge concerning the effects of parent-implemented, early intervention with their autistic children?). Results Overall, it appeared that early, parent-implemented interventions for autism result in positive effects that outweigh any undesirable effects. However, as opposed to overall recommendations, the heterogeneity of the evidence required that recommendations be specific to particular interventions, based on the questions of whether the benefits of a particular intervention outweighs its harms. Conclusions This pilot project provided evidence that a modified GRADE method may be an effective and practical approach to making recommendations in CYMH, based on credible knowledge. Key strengths of the process included separating the assessments of the quality of the evidence and the strength of recommendations, transparency in decision-making, and the objectivity of the methods. Most importantly, this method combined the evidence and clinical experience in a more timely, explicit and simple process as compared to previous approaches. The strengths, limitations and modifications of the approach as they pertain to CYMH, are discussed

    The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons

    Get PDF
    To connect human biology to fish biomedical models, we sequenced the genome of spotted gar (Lepisosteus oculatus), whose lineage diverged from teleosts before teleost genome duplication (TGD). The slowly evolving gar genome has conserved in content and size many entire chromosomes from bony vertebrate ancestors. Gar bridges teleosts to tetrapods by illuminating the evolution of immunity, mineralization and development (mediated, for example, by Hox, ParaHox and microRNA genes). Numerous conserved noncoding elements (CNEs; often cis regulatory) undetectable in direct human-teleost comparisons become apparent using gar: functional studies uncovered conserved roles for such cryptic CNEs, facilitating annotation of sequences identified in human genome-wide association studies. Transcriptomic analyses showed that the sums of expression domains and expression levels for duplicated teleost genes often approximate the patterns and levels of expression for gar genes, consistent with subfunctionalization. The gar genome provides a resource for understanding evolution after genome duplication, the origin of vertebrate genomes and the function of human regulatory sequences

    Horizontal Polarization in Array Studies of Anomalous Geomagnetic Variations

    No full text

    Seasonal variation in the diversity and abundance of pelagic larvae of Antarctic marine invertebrates

    No full text
    Most marine benthic macroinvertebrate species reproduce via a larval phase but attempts to explain the occurrence of different larval strategies (feeding or non-feeding, pelagic or benthic) in different habitats have been largely inconclusive. There have been very few year-round surveys of meroplankton at any latitude and in consequence fundamental data on the diversity, abundance, and timings of larval life history phases are lacking. There has been considerable debate regarding the viability of pelagic larvae in cold waters with highly seasonal primary production but there has been only one year-round study of meroplankton in the Southern Ocean, and that was outside of the Antarctic Circle. We present data from the first year-round survey of meroplankton assemblages at a location within the Antarctic Circle. We surveyed abundances of meroplanktonic larvae over 1.5 year at Rothera Point, West Antarctic Peninsula (67A degrees 34'S, 68A degrees 07'W). Larvae were collected in monthly diver-towed net samples close to the seabed at 20 and 6 m total water depths at each of three locations and were identified and counted live immediately after sampling. A total of 99 operationally defined taxonomic types representing 11 phyla were recorded but this is likely to be an underestimate of true diversity because of inherent difficulties of identification. Larvae were present in all months of the year and although planktotrophic larvae were more abundant in summer, both feeding and non-feeding types were present in all months. Comparisons of seasonal larval abundances with data from a settlement study at the same sites and from the literature show that larvae of mobile adults settle in summer regardless of developmental type, whereas sessile taxa settle in all seasons. We suggest that this is a consequence of differences in the food requirements of mobile and sessile fauna and that the availability of food for post-larval juveniles is more critical for survival than factors affecting the larval stage itself
    corecore