318 research outputs found

    Signal Detection on the Battlefield: Priming Self-Protection vs. Revenge-Mindedness Differentially Modulates the Detection of Enemies and Allies

    Get PDF
    Detecting signs that someone is a member of a hostile outgroup can depend on very subtle cues. How do ecology-relevant motivational states affect such detections? This research investigated the detection of briefly-presented enemy (versus friend) insignias after participants were primed to be self-protective or revenge-minded. Despite being told to ignore the objectively nondiagnostic cues of ethnicity (Arab vs. Western/European), gender, and facial expressions of the targets, both priming manipulations enhanced biases to see Arab males as enemies. They also reduced the ability to detect ingroup enemies, even when these faces displayed angry expressions. These motivations had very different effects on accuracy, however, with self-protection enhancing overall accuracy and revenge-mindedness reducing it. These methods demonstrate the importance of considering how signal detection tasks that occur in motivationally-charged environments depart from results obtained in conventionally motivationally-inert laboratory settings.National Institute of Mental Health (U.S.) (Grant MH64734)U.S. Army Research Institute for the Behavioral and Social Sciences (Grant W74V8H-05-K-0003)National Science Foundation (U.S.) (Grant BCS-0642873

    Improvements in vascular health by a low-fat diet, but not a high-fat diet, are mediated by changes in adipocyte biology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Low-fat (LF) and high-fat (HF) weight loss diets improve brachial artery flow-mediated dilation (FMD) in obese individuals, although results are conflicting. Moreover, the role that adipose tissue plays in mediating these diet-related effects are unknown.</p> <p>Objective</p> <p>This study examined how modulations in FMD by HF and LF diets relate to changes in adipocyte parameters.</p> <p>Design</p> <p>Obese subjects (n = 17) were randomized to a HF diet (60% kcal as fat) or a LF diet (25% kcal as fat) for 6 weeks. Both groups were restricted by 25% of energy needs.</p> <p>Results</p> <p>Body weight decreased (<it>P <</it>0.05) in both groups (HF: -6.6 ± 0.5 kg, LF: -4.7 ± 0.6 kg). Fat mass and waist circumference were reduced (<it>P <</it>0.05) in the LF group only (-4.4 ± 0.3 kg; -3.6 ± 0.8 cm, respectively). FMD improved (<it>P <</it>0.05) in the LF group (7.4 ± 0.8% to 9.8 ± 0.8; 32% increase) and was impaired in the HF group (8.5 ± 0.6% to 6.9 ± 0.7; 19% reduction). Increases in plasma adiponectin (<it>P <</it>0.05, 16 ± 5%), and decreases in resistin (<it>P <</it>0.05, -26 ± 11%), were shown by the LF diet only. Greater decreases in leptin were observed with LF (-48 ± 9%) versus HF (-28 ± 12%) (<it>P <</it>0.05, diet × time). Increased FMD by the LF diet was associated with increased adiponectin, and decreased fat mass, waist circumference, leptin, and resistin.</p> <p>Conclusion</p> <p>Beneficial modulations in vascular health by LF diets may be mediated by improvements in adipocyte parameters.</p

    Surface plasmon resonance imaging of cells and surface-associated fibronectin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A critical challenge in cell biology is quantifying the interactions of cells with their extracellular matrix (ECM) environment and the active remodeling by cells of their ECM. Fluorescence microscopy is a commonly employed technique for examining cell-matrix interactions. A label-free imaging method would provide an alternative that would eliminate the requirement of transfected cells and modified biological molecules, and if collected nondestructively, would allow long term observation and analysis of live cells.</p> <p>Results</p> <p>Using surface plasmon resonance imaging (SPRI), the deposition of protein by vascular smooth muscle cells (vSMC) cultured on fibronectin was quantified as a function of cell density and distance from the cell periphery. We observed that as much as 120 ng/cm<sup>2 </sup>of protein was deposited by cells in 24 h.</p> <p>Conclusion</p> <p>SPRI is a real-time, low-light-level, label-free imaging technique that allows the simultaneous observation and quantification of protein layers and cellular features. This technique is compatible with live cells such that it is possible to monitor cellular modifications to the extracellular matrix in real-time.</p

    Ribonucleotide reductases of Salmonella Typhimurium : transcriptional regulation and differential role in pathogenesis

    Get PDF
    Ribonucleotide reductases (RNRs) are essential enzymes that carry out the de novo synthesis of deoxyribonucleotides by reducing ribonucleotides. There are three different classes of RNRs (I, II and III), all having different oxygen dependency and biochemical characteristics. Salmonella enterica serovar Typhimurium (S. Typhimurium) harbors class Ia, class Ib and class III RNRs in its genome. We have studied the transcriptional regulation of these three RNR classes in S. Typhimurium as well as their differential function during infection of macrophage and epithelial cells. Deletion of both NrdR and Fur, two main transcriptional regulators, indicates that Fur specifically represses the class Ib enzyme and that NrdR acts as a global repressor of all three classes. A Fur recognition sequence within the nrdHIEF promoter has also been described and confirmed by electrophoretic mobility shift assays (EMSA). In order to elucidate the role of each RNR class during infection, S. Typhimurium single and double RNR mutants (as well as Fur and NrdR mutants) were used in infection assays with macrophage and epithelial cell lines. Our results indicate class Ia to be mainly responsible for deoxyribonucleotide production during invasion and proliferation inside macrophages and epithelial cells. Neither class Ib nor class III seem to be essential for growth under these conditions. However, class Ib is able to maintain certain growth in an nrdAB mutant during the first hours of macrophage infection. Our results suggest that, during the early stages of macrophage infection, class Ib may contribute to deoxyribonucleotide synthesis by means of both an NrdR and a Fur-dependent derepression of nrdHIEF due to hydrogen peroxide production and DNA damage associated with the oxidative burst, thus helping to overcome the host defenses

    Design strategies to improve patient motivation during robot-aided rehabilitation

    Get PDF
    BACKGROUND: Motivation is an important factor in rehabilitation and frequently used as a determinant of rehabilitation outcome. Several factors can influence patient motivation and so improve exercise adherence. This paper presents the design of two robot devices for use in the rehabilitation of upper limb movements, that can motivate patients during the execution of the assigned motor tasks by enhancing the gaming aspects of rehabilitation. In addition, a regular review of the obtained performance can reinforce in patients' minds the importance of exercising and encourage them to continue, so improving their motivation and consequently adherence to the program. In view of this, we also developed an evaluation metric that could characterize the rate of improvement and quantify the changes in the obtained performance. METHODS: Two groups (G1, n = 8 and G2, n = 12) of patients with chronic stroke were enrolled in a 3-week rehabilitation program including standard physical therapy (45 min. daily) plus treatment by means of robot devices (40 min., twice daily) respectively for wrist (G1) and elbow-shoulder movements (G2). Both groups were evaluated by means of standard clinical assessment scales and the new robot measured evaluation metric. Patients' motivation was assessed in 9/12 G2 patients by means of the Intrinsic Motivation Inventory (IMI) questionnaire. RESULTS: Both groups reduced their motor deficit and showed a significant improvement in clinical scales and the robot measured parameters. The IMI assessed in G2 patients showed high scores for interest, usefulness and importance subscales and low values for tension and pain subscales. CONCLUSION: Thanks to the design features of the two robot devices the therapist could easily adapt training to the individual by selecting different difficulty levels of the motor task tailored to each patient's disability. The gaming aspects incorporated in the two rehabilitation robots helped maintain patients' interest high during execution of the assigned tasks by providing feedback on performance. The evaluation metric gave a precise measure of patients' performance and thus provides a tool to help therapists promote patient motivation and hence adherence to the training program

    Bovine liver slices combined with an androgen transcriptional activation assay: an in-vitro model to study the metabolism and bioactivity of steroids

    Get PDF
    Previously we described the properties of a rapid and robust yeast androgen bioassay for detection of androgenic anabolic compounds, validated it, and showed its added value for several practical applications. However, biotransformation of potent steroids into inactive metabolites, or vice versa, is not included in this screening assay. Within this context, animal-friendly in-vitro cellular systems resembling species-specific metabolism can be of value. We therefore investigated the metabolic capacity of precision-cut slices of bovine liver using 17β-testosterone (T) as a model compound, because this is an established standard compound for assessing the metabolic capacity of such cellular systems. However, this is the first time that slice metabolism has been combined with bioactivity measurements. Moreover, this study also involves bioactivation of inactive prohormones, for example dehydroepiandrosterone (DHEA) and esters of T, and although medium extracts are normally analyzed by HPLC, here the metabolites formed were identified with more certainty by ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC–TOFMS) with accurate mass measurement. Metabolism of T resulted mainly in the formation of the less potent phase I metabolites 4-androstene-3,17-dione (4-AD), the hydroxy-T metabolites 6α, 6β, 15β, and 16α-OH-T, and the phase II metabolite T-glucuronide. As a consequence the overall androgenic activity, as determined by the yeast androgen bioassay, decreased. In order to address the usefulness of bovine liver slices for activation of inactive steroids, liver slices were exposed to DHEA and two esters of T. This resulted in an increase of androgenic activity, because of the formation of 4-AD and T

    Patients with rheumatoid arthritis have an altered circulatory aggrecan profile

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rheumatoid arthritis (RA) is a chronic auto-immune disease with extensive articular cartilage destruction. Aggrecan depletion, mediated by aggrecanases is one of the first signs of early cartilage erosion. We investigated, whether measurement of aggrecan and fragments thereof in serum, could be used as biomarkers for joint-disease in RA patients and furthermore characterized the fragments found in the circulation.</p> <p>Methods</p> <p>The study consisted of 38 patients, 12 males (62.2 ± 16.0 years) and 26 females (59.8 ± 20.7 years) diagnosed with RA: 41.5 ± 27.5 mm/h erythrocyte sedimentation rate (ESR), 38.4 ± 34.7 mg/ml C-reactive protein (CRP) and 4.8 ± 1.7 disease activity score (DAS) and 108 healthy age-matched controls. Aggrecan levels were measured using two immunoassays, i.e. the <sup>374</sup>ARGSVI-G2 sandwich ELISA measuring aggrecanase-mediated aggrecan degradation and the G1/G2 sandwich assay, detecting aggrecan molecules containing G1 and/or G2 (total aggrecan) We further characterized serum samples by western blots, by using monoclonal antibodies F-78, binding to G1 and G2, or by BC-3, detecting the aggrecanase-generated N-terminal <sup>374</sup>ARGSVI neo-epitope.</p> <p>Results</p> <p>Total aggrecan levels in RA patients were significantly decreased from 824.8 ± 31 ng/ml in healthy controls to 570.5 ± 30 ng/ml (31% decrease, P < 0.0001), as measured by the G1/G2 ELISA. Western blot analysis with F-78 showed one strong band at 10 kDa, and weaker bands at 25 and 45 kDa in both healthy controls and RA patients. In contrast, staining for aggrecanase-activity revealed only one strong band in RA patients of 45 kDa.</p> <p>Conclusion</p> <p>This is the first study, which characterizes different aggrecan fragments in human serum. The data strongly suggests that total aggrecan levels, i.e. aggrecan molecules containing G1 and/or G2 are lower in RA patients, and that RA patients have at least one specific subpopulation of aggrecan fragments, namely aggrecanse generated <sup>374</sup>ARGSVI fragments. Further clinical studies are needed to investigate the potential of G1/G2 as a structure-related biochemical marker in destructive joint-diseases.</p
    corecore