946 research outputs found

    Formulation and evaluation of poly (L-lactide-co-ε-caprolactone) loaded gliclazide biodegradable nanoparticles as a control release carrier

    Get PDF
    A biodegradable nanoparticle has been used frequently as drug delivery carrier due to its better encapsulation capacity, sustained/ control release property and less toxicity. Gliclazide (GLZ) is a second generation of hypoglycemic sulfonylurea and acts selectively on pancreatic ß cell to control diabetes mellitus. The objective of this study was to produce controlled release nanoparticles of Gliclazide using poly (L-lactide-co-ε-caprolactone) (PLCL). The method was optimized using design of experiments by employing a 3-factor, 3-level Design Expert (version 8.0.7.1) Statistical Design Software and was subjected to various characterization studies including Field Emission Scanning Electron Microscopy (FE-SEM), X-ray diffraction (XRD), Encapsulation efficiency (%EE), Particle Size Distribution (PSD), etc. Formulated nanoparticles were also subjected to Fourier Transform Infrared Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC) for studying interaction between drug and polymer and the effect of lyophilization (Freeze Drying) on developed nanoparticles.  The release profiles and encapsulation efficiencies are depended on the concentration of PLCL. These data demonstrated the efficacy of the biodegradable polymeric nanoparticles in controlling the gliclazide drug release profile as novel drug delivery system

    Cutting-edge biotechnological advancement in islet delivery using pancreatic and cellular approaches.

    Get PDF
    There are approximately 1 billion prediabetic people worldwide, and the global cost for diabetes mellitus (DM) is estimated to be $825 billion. In regard to Type 1 DM, transplanting a whole pancreas or its islets has gained the attention of researchers in the last few decades. Recent studies showed that islet transplantation (ILT) containing insulin-producing β cells is the most notable advancement cure for Type 1 DM. However, this procedure has been hindered by shortage and lack of sufficient islet donors and the need for long-term immunosuppression of any potential graft rejection. The strategy of encapsulation may avoid the rejection of stem-cell-derived allogeneic islets or xenogeneic islets. This review article describes various biotechnology features in encapsulation-of-islet-cell therapy for humans, including the use of bile acids

    White rice consumption and risk of esophageal cancer in Xinjiang Uyghur Autonomous Region, northwest China: a case-control study

    Get PDF
    This study investigated the association between white rice consumption and the risk of esophageal cancer in remote northwest China, where the cancer incidence is known to be high. A case-control study was conducted during 2008-2009 in Urumqi and Shihezi, Xinjiang Uyghur Autonomous Region of China. Participants were 359 incident esophageal cancer patients and 380 hospital-based controls. Information on habitual white rice consumption was obtained by personal interview using a validated semi-quantitative food frequency questionnaire. Logistic regression analyses were performed to assess the association between white rice consumption and the esophageal cancer risk. Confounding variables including socio-demographics, family history, dietary and lifestyle factors were adjusted in the multivariate model. The esophageal cancer patients reported lower consumption levels of white rice-based products, including cooked white rice and porridge, when compared to the control group. Overall, regular consumption of white rice foods was inversely associated with the esophageal cancer risk, the adjusted OR being 0.34 (95 % CI 0.23 to 0.52) for the highest (>250 g) versus the lowest (<92 g) tertile of daily intake. Similar reductions in risk were also apparent for high consumption levels of cooked white rice and porridge. In conclusion, habitual white rice consumption was associated with a reduced risk of esophageal cancer for adults residing in northwest China. Our findings provide evidence to support the continued consumption of white rice

    OptFlux: an open-source software platform for in silico metabolic engineering

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Over the last few years a number of methods have been proposed for the phenotype simulation of microorganisms under different environmental and genetic conditions. These have been used as the basis to support the discovery of successful genetic modifications of the microbial metabolism to address industrial goals. However, the use of these methods has been restricted to bioinformaticians or other expert researchers. The main aim of this work is, therefore, to provide a user-friendly computational tool for Metabolic Engineering applications.</p> <p>Results</p> <p><it>OptFlux </it>is an open-source and modular software aimed at being the reference computational application in the field. It is the first tool to incorporate strain optimization tasks, i.e., the identification of Metabolic Engineering targets, using Evolutionary Algorithms/Simulated Annealing metaheuristics or the previously proposed OptKnock algorithm. It also allows the use of stoichiometric metabolic models for (i) phenotype simulation of both wild-type and mutant organisms, using the methods of Flux Balance Analysis, Minimization of Metabolic Adjustment or Regulatory on/off Minimization of Metabolic flux changes, (ii) Metabolic Flux Analysis, computing the admissible flux space given a set of measured fluxes, and (iii) pathway analysis through the calculation of Elementary Flux Modes.</p> <p><it>OptFlux </it>also contemplates several methods for model simplification and other pre-processing operations aimed at reducing the search space for optimization algorithms.</p> <p>The software supports importing/exporting to several flat file formats and it is compatible with the SBML standard. <it>OptFlux </it>has a visualization module that allows the analysis of the model structure that is compatible with the layout information of <it>Cell Designer</it>, allowing the superimposition of simulation results with the model graph.</p> <p>Conclusions</p> <p>The <it>OptFlux </it>software is freely available, together with documentation and other resources, thus bridging the gap from research in strain optimization algorithms and the final users. It is a valuable platform for researchers in the field that have available a number of useful tools. Its open-source nature invites contributions by all those interested in making their methods available for the community.</p> <p>Given its plug-in based architecture it can be extended with new functionalities. Currently, several plug-ins are being developed, including network topology analysis tools and the integration with Boolean network based regulatory models.</p

    Industrial Systems Biology of Saccharomyces cerevisiae Enables Novel Succinic Acid Cell Factory.

    Get PDF
    Saccharomyces cerevisiae is the most well characterized eukaryote, the preferred microbial cell factory for the largest industrial biotechnology product (bioethanol), and a robust commerically compatible scaffold to be exploitted for diverse chemical production. Succinic acid is a highly sought after added-value chemical for which there is no native pre-disposition for production and accmulation in S. cerevisiae. The genome-scale metabolic network reconstruction of S. cerevisiae enabled in silico gene deletion predictions using an evolutionary programming method to couple biomass and succinate production. Glycine and serine, both essential amino acids required for biomass formation, are formed from both glycolytic and TCA cycle intermediates. Succinate formation results from the isocitrate lyase catalyzed conversion of isocitrate, and from the alpha-keto-glutarate dehydrogenase catalyzed conversion of alpha-keto-glutarate. Succinate is subsequently depleted by the succinate dehydrogenase complex. The metabolic engineering strategy identified included deletion of the primary succinate consuming reaction, Sdh3p, and interruption of glycolysis derived serine by deletion of 3-phosphoglycerate dehydrogenase, Ser3p/Ser33p. Pursuing these targets, a multi-gene deletion strain was constructed, and directed evolution with selection used to identify a succinate producing mutant. Physiological characterization coupled with integrated data analysis of transcriptome data in the metabolically engineered strain were used to identify 2nd-round metabolic engineering targets. The resulting strain represents a 30-fold improvement in succinate titer, and a 43-fold improvement in succinate yield on biomass, with only a 2.8-fold decrease in the specific growth rate compared to the reference strain. Intuitive genetic targets for either over-expression or interruption of succinate producing or consuming pathways, respectively, do not lead to increased succinate. Rather, we demonstrate how systems biology tools coupled with directed evolution and selection allows non-intuitive, rapid and substantial re-direction of carbon fluxes in S. cerevisiae, and hence show proof of concept that this is a potentially attractive cell factory for over-producing different platform chemicals

    Comparison of glottic views and intubation times in the supine and 25 degree back-up positions

    Get PDF
    Background: We explored whether positioning patients in a 25° back-up sniffing position improved glottic views and ease of intubation. Methods: In the first part of the study, patients were intubated in the standard supine sniffing position. In the second part, the back of the operating table was raised 25° from the horizontal by flexion of the torso at the hips while maintaining the sniffing position. The best view obtained during laryngoscopy was assessed using the Cormack and Lehane classification and Percentage of Glottic Opening (POGO) score. The number of attempts at both laryngoscopy and tracheal intubation, together with the use of ancillary equipment and manoeuvres were recorded. The ease of intubation was indirectly assessed by recording the time interval between beginning of laryngoscopy and insertion of the tracheal tube. Results: Seven hundred eighty one unselected surgical patients scheduled for non-emergency surgery were included. In the back-up position, ancillary laryngeal manoeuvres, which included cricoid pressure, backwards upwards rightward pressure and external laryngeal manipulation, were required less frequently (19.6 % versus 24. 6 %, p = 0.004). The time from beginning of laryngoscopy to insertion of the tracheal tube was 14 % shorter (median time 24 versus 28 s, p = 0.031) in the back-up position. There was no significant difference in glottic views. Conclusions: The 25° back-up position improved the ease of intubation as judged by the need for fewer ancillary manoeuvres and shorter time for intubation. Trial registration: ClinicalTrials.gov Identifier: NCT02934347 registered retrospectively on 14th Oct 2016

    Crude oil yield and properties of rice bran oil from different varieties as affected by extraction conditions using soxhterm method

    Get PDF
    The current study was employed to investigate the effect of solvent type, extraction time and bran ratio on the rice bran oil (RBO) properties from three varieties of rice bran namely Bario, lowland and upland rice. RBO was extracted by using soxtherm extraction method using methanol solvent at different extraction time (3, 4 and 5 h) and bran ratio (10, 20 and 30 g). Free fatty acid (FFA), total phenolic content (TPC) and antioxidant properties were assessed. Solvent that has low polarity exhibited the attraction of polar component of oil with the highest yield by ethanol (16.16%), followed by methanol (15.38%). FFA contents occurred higher in lowland types of rice bran in all types of solvents at P<0.05 with ethanol (12.73%), methanol (11.96%) and hexane (11.13%), while the total phenolic content and antioxidant properties were influenced by the types of rice bran and solvents used for extracting components out of the bran. The highest phenolic content in the crude oil was extracted using ethanol in lowland (0.509 mg/ml), and the lowest was extracted by hexane in Bario (0.061 mg/ml). The highest antioxidant activity was observed in RBO extracted using methanol of lowland (73.74%) and RBO extracted using ethanol of upland (73.65%), while the lowest were observed in RBO extracted using hexane. The different types of solvent have the significant impact on the crude oil yield and properties of crude oil extracted

    A network perspective on the topological importance of enzymes and their phylogenetic conservation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A metabolic network is the sum of all chemical transformations or reactions in the cell, with the metabolites being interconnected by enzyme-catalyzed reactions. Many enzymes exist in numerous species while others occur only in a few. We ask if there are relationships between the phylogenetic profile of an enzyme, or the number of different bacterial species that contain it, and its topological importance in the metabolic network. Our null hypothesis is that phylogenetic profile is independent of topological importance. To test our null hypothesis we constructed an enzyme network from the KEGG (Kyoto Encyclopedia of Genes and Genomes) database. We calculated three network indices of topological importance: the degree or the number of connections of a network node; closeness centrality, which measures how close a node is to others; and betweenness centrality measuring how frequently a node appears on all shortest paths between two other nodes.</p> <p>Results</p> <p>Enzyme phylogenetic profile correlates best with betweenness centrality and also quite closely with degree, but poorly with closeness centrality. Both betweenness and closeness centralities are non-local measures of topological importance and it is intriguing that they have contrasting power of predicting phylogenetic profile in bacterial species. We speculate that redundancy in an enzyme network may be reflected by betweenness centrality but not by closeness centrality. We also discuss factors influencing the correlation between phylogenetic profile and topological importance.</p> <p>Conclusion</p> <p>Our analysis falsifies the hypothesis that phylogenetic profile of enzymes is independent of enzyme network importance. Our results show that phylogenetic profile correlates better with degree and betweenness centrality, but less so with closeness centrality. Enzymes that occur in many bacterial species tend to be those that have high network importance. We speculate that this phenomenon originates in mechanisms driving network evolution. Closeness centrality reflects phylogenetic profile poorly. This is because metabolic networks often consist of distinct functional modules and some are not in the centre of the network. Enzymes in these peripheral parts of a network might be important for cell survival and should therefore occur in many bacterial species. They are, however, distant from other enzymes in the same network.</p

    Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    SummaryBackground The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. Methods We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors—the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). Findings Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6–58·8) of global deaths and 41·2% (39·8–42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. Interpretation Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. Funding Bill & Melinda Gates Foundation
    corecore