4,001 research outputs found

    DNA Vaccines Encoding Antigen Targeted to MHC Class II Induce Influenza-Specific CD8+ T Cell Responses, Enabling Faster Resolution of Influenza Disease

    Get PDF
    Current influenza vaccines are effective but imperfect, failing to cover against emerging strains of virus and requiring seasonal administration to protect against new strains. A key step to improving influenza vaccines is to improve our understanding of vaccine induced protection. Whilst it is clear that antibodies play a protective role, vaccine induced CD8+ T cells can improve protection. To further explore the role of CD8+ T cells we used a DNA vaccine that encodes antigen dimerised to an immune cell targeting module. Immunising CB6F1 mice with the DNA vaccine in a heterologous prime boost regime with the seasonal protein vaccine improved the resolution of influenza disease compared to protein alone. This improved disease resolution was dependent on CD8+ T cells. However, DNA vaccine regimes that induced CD8+ T cells alone were not protective and did not boost the protection provided by protein. The MHC targeting module used was an anti-I-Ed single chain antibody specific to the BALB/c strain of mice. To test the role of MHC targeting we compared the response between BALB/c, C57BL/6 mice and an F1 cross of the two strains (CB6F1). BALB/c mice were protected, C57BL/6 were not and the F1 had an intermediate phenotype; showing that the targeting of antigen is important in the response. Based on these findings, and in agreement with other studies using different vaccines, we conclude that in addition to antibody, inducing a protective CD8 response is important in future influenza vaccines

    Corrigendum: Airway T cells protect against RSV infection in the absence of antibody

    Get PDF
    Correction to: Mucosal Immunology (2018) 11, 249–256; doi:10.1038/mi.2017.46; published online 24 May 201

    Comparative analysis of enzymatically produced novel linear DNA constructs with plasmids for use as DNA vaccines

    Get PDF
    The use of DNA to deliver vaccine antigens offers many advantages, including ease of manufacture and cost. However, most DNA vaccines are plasmids and must be grown in bacterial culture, necessitating elements which are either unnecessary for effective gene delivery (e.g. bacterial origins of replication) or undesirable (e.g. antibiotic resistance genes). Removing these elements may improve the safety profile of DNA for the delivery of vaccines. Here we describe a novel, double-stranded, linear DNA construct produced by an enzymatic process that solely encodes an antigen expression cassette, comprising antigen, promoter, polyA tail and telomeric ends. We compared these constructs (called ‘Doggybones’ because of their shape) with conventional plasmid DNA. Using luciferase-expressing constructs, we demonstrated that expression levels were equivalent between Doggybones and plasmids both in vitro and in vivo. When mice were immunized with DNA constructs expressing the HIV envelope protein gp140, equivalent humoral and cellular responses were induced. Immunizations with either construct type expressing haemagluttinin were protective against H1N1 influenza challenge. This is the first example of an effective DNA vaccine which can be produced on a large scale by enzymatic processes

    AGN feedback in the Phoenix cluster

    Get PDF
    Active galactic nuclei (AGN) release a huge amount of energy into the intracluster medium (ICM) with the consequence of offsetting cooling and star formation (AGN feedback) in the centers of cool core clusters. The Phoenix cluster is among the most massive clusters of galaxies known in the Universe. It hosts a powerful starburst of several hundreds of Solar masses per year and a large amount of molecular gas in the center. In this work we use the high-resolution Reflection Grating Spectrometer (RGS) on board XMM-Newton to study the X-ray emitting cool gas in the Phoenix cluster and heating-cooling balance. We detect for the first time evidence of O VIII and Fe XXI-XXII emission lines, the latter demonstrating the presence of gas below 2 keV. We find a cooling rate of 350 (-200,+250) Msun/year below 2 keV (at the 90% confidence level), which is consistent with the star formation rate in this object. This cooling rate is high enough to produce the molecular gas found in the filaments via instabilities during the buoyant rising time. The line broadening indicates that the turbulence (~ 300 km/s or less) is below the level required to produce and propagate the heat throughout the cool core. This provides a natural explanation to the coexistence of large amounts of cool gas, star formation and a powerful AGN in the core. The AGN activity may be either at a young stage or in a different feedback mode, due to a high accretion rate

    Trypanosoma brucei aquaglyceroporin 2 is a high-affinity transporter for pentamidine and melaminophenyl arsenic drugs and the main genetic determinant of resistance to these drugs.

    Get PDF
    OBJECTIVES: Trypanosoma brucei drug transporters include the TbAT1/P2 aminopurine transporter and the high-affinity pentamidine transporter (HAPT1), but the genetic identity of HAPT1 is unknown. We recently reported that loss of T. brucei aquaglyceroporin 2 (TbAQP2) caused melarsoprol/pentamidine cross-resistance (MPXR) in these parasites and the current study aims to delineate the mechanism by which this occurs. METHODS: The TbAQP2 loci of isogenic pairs of drug-susceptible and MPXR strains of T. brucei subspecies were sequenced. Drug susceptibility profiles of trypanosome strains were correlated with expression of mutated TbAQP2 alleles. Pentamidine transport was studied in T. brucei subspecies expressing TbAQP2 variants. RESULTS: All MPXR strains examined contained TbAQP2 deletions or rearrangements, regardless of whether the strains were originally adapted in vitro or in vivo to arsenicals or to pentamidine. The MPXR strains and AQP2 knockout strains had lost HAPT1 activity. Reintroduction of TbAQP2 in MPXR trypanosomes restored susceptibility to the drugs and reinstated HAPT1 activity, but did not change the activity of TbAT1/P2. Expression of TbAQP2 sensitized Leishmania mexicana promastigotes 40-fold to pentamidine and >1000-fold to melaminophenyl arsenicals and induced a high-affinity pentamidine transport activity indistinguishable from HAPT1 by Km and inhibitor profile. Grafting the TbAQP2 selectivity filter amino acid residues onto a chimeric allele of AQP2 and AQP3 partly restored susceptibility to pentamidine and an arsenical. CONCLUSIONS: TbAQP2 mediates high-affinity uptake of pentamidine and melaminophenyl arsenicals in trypanosomes and TbAQP2 encodes the previously reported HAPT1 activity. This finding establishes TbAQP2 as an important drug transporter

    Motivated proteins: a web application for studying small three-dimensional protein motifs

    Get PDF
    <b>BACKGROUND:</b> Small loop-shaped motifs are common constituents of the three-dimensional structure of proteins. Typically they comprise between three and seven amino acid residues, and are defined by a combination of dihedral angles and hydrogen bonding partners. The most abundant of these are alphabeta-motifs, asx-motifs, asx-turns, beta-bulges, beta-bulge loops, beta-turns, nests, niches, Schellmann loops, ST-motifs, ST-staples and ST-turns.We have constructed a database of such motifs from a range of high-quality protein structures and built a web application as a visual interface to this. <b>DESCRIPTION:</b> The web application, Motivated Proteins, provides access to these 12 motifs (with 48 sub-categories) in a database of over 400 representative proteins. Queries can be made for specific categories or sub-categories of motif, motifs in the vicinity of ligands, motifs which include part of an enzyme active site, overlapping motifs, or motifs which include a particular amino acid sequence. Individual proteins can be specified, or, where appropriate, motifs for all proteins listed. The results of queries are presented in textual form as an (X)HTML table, and may be saved as parsable plain text or XML. Motifs can be viewed and manipulated either individually or in the context of the protein in the Jmol applet structural viewer. Cartoons of the motifs imposed on a linear representation of protein secondary structure are also provided. Summary information for the motifs is available, as are histograms of amino acid distribution, and graphs of dihedral angles at individual positions in the motifs. <b>CONCLUSION:</b> Motivated Proteins is a publicly and freely accessible web application that enables protein scientists to study small three-dimensional motifs without requiring knowledge of either Structured Query Language or the underlying database schem

    Dynamic walking features and improved walking performance in multiple sclerosis patients treated with fampridine (4-aminopyridine)

    Get PDF
    Background: Impaired walking capacity is a frequent confinement in Multiple Sclerosis (MS). Patients are affected by limitations in coordination, walking speed and the distance they may cover. Also abnormal dynamic walking patterns have been reported, involving continuous deceleration over time. Fampridine (4-aminopyridine), a potassium channel blocker, may improve walking in MS. The objective of the current study was to comprehensively examine dynamic walking characteristics and improved walking capacity in MS patients treated with fampridine. Methods: A sample of N = 35 MS patients (EDSS median: 4) underwent an electronic walking examination prior to (Time 1), and during treatment with fampridine (Time 2). Patients walked back and forth a distance of 25 ft for a maximum period of 6 min (6-minute 25-foot-walk). Besides the total distance covered, average speed on the 25-foot distance and on turns was determined separately for each test minute, at Time 1 and Time 2. Results: Prior to fampridine administration, 27/35 patients (77 %) were able to complete the entire 6 min of walking, while following the administration, 34/35 patients (97 %) managed to walk for 6 min. In this context, walking distance considerably increased and treatment was associated with faster walking and turning across all six test minutes (range of effect sizes: partial eta squared = .34-.72). Importantly, previously reported deceleration across test minutes was consistently observable at Time 1 and Time 2. Discussion: Fampridine administration is associated with improved walking speed and endurance. Regardless of a treatment effect of fampridine, the previously identified, abnormal dynamic walking feature, i.e. the linear decline in walking speed, may represent a robust feature. Conclusions: The dynamic walking feature might hence be considered as a candidate for a new outcome measure in clinical studies involving interventions other than symptomatic treatment, such as immune-modulating medication. Trial registration: DRKS00009228 (German Clinical Trials Register). Date obtained: 25.08.2015

    Complex circular subsidence structures in tephra deposited on large blocks of ice: Varða tuff cone, Öræfajökull, Iceland

    Get PDF
    Several broadly circular structures up to 16 m in diameter, into which higher strata have sagged and locally collapsed, are present in a tephra outcrop on southwest Öræfajökull, southern Iceland. The tephra was sourced in a nearby basaltic tuff cone at Varða. The structures have not previously been described in tuff cones, and they probably formed by the melting out of large buried blocks of ice emplaced during a preceding jökulhlaup that may have been triggered by a subglacial eruption within the Öræfajökull ice cap. They are named ice-melt subsidence structures, and they are analogous to kettle holes that are commonly found in proglacial sandurs and some lahars sourced in ice-clad volcanoes. The internal structure is better exposed in the Varða examples because of an absence of fluvial infilling and reworking, and erosion of the outcrop to reveal the deeper geometry. The ice-melt subsidence structures at Varða are a proxy for buried ice. They are the only known evidence for a subglacial eruption and associated jökulhlaup that created the ice blocks. The recognition of such structures elsewhere will be useful in reconstructing more complete regional volcanic histories as well as for identifying ice-proximal settings during palaeoenvironmental investigations

    Scaffolding development and the human condition

    Get PDF
    This paper addresses the concept of semiotic scaffolding by considering it in light of questions arising from the contemporary challenge to the humanities. This challenge comes from a mixture of scientistic demands, opportunism on the part of Western governments in thrall to neo-liberalism, along with crass economic utilitarianism. In this paper we attempt to outline what a theory of semiotic scaffolding may offer to an understanding of the humanities’ contemporary role, as well as what the humanities might offer to the elucidation of semiotic scaffolding. We argue that traditional humanist positions adopted in defence of the humanities fail to articulate the enhancement of humanity that semiotic scaffolding represents. At the same time, we note that the concept of scaffolding is sometimes in danger of taking on a functionalist perspective which understanding the humanities modus operandi is likely to dispel. Putting forward these arguments, we draw on the work of Peirce, Cassirer and Sebeok in elucidating the structural and ‘future-orientated’ benefits of the scaffolding process as it suffuses the humanities
    corecore