228 research outputs found

    Strong signature of natural selection within an FHIT intron implicated in prostate cancer risk

    Get PDF
    Previously, a candidate gene linkage approach on brother pairs affected with prostate cancer identified a locus of prostate cancer susceptibility at D3S1234 within the fragile histidine triad gene (FHIT), a tumor suppressor that induces apoptosis. Subsequent association tests on 16 SNPs spanning approximately 381 kb surrounding D3S1234 in Americans of European descent revealed significant evidence of association for a single SNP within intron 5 of FHIT. In the current study, resequencing and genotyping within a 28.5 kb region surrounding this SNP further delineated the association with prostate cancer risk to a 15 kb region. Multiple SNPs in sequences under evolutionary constraint within intron 5 of FHIT defined several related haplotypes with an increased risk of prostate cancer in European-Americans. Strong associations were detected for a risk haplotype defined by SNPs 138543, 142413, and 152494 in all cases (Pearson's χ2 = 12.34, df 1, P = 0.00045) and for the homozygous risk haplotype defined by SNPs 144716, 142413, and 148444 in cases that shared 2 alleles identical by descent with their affected brothers (Pearson's χ2 = 11.50, df 1, P = 0.00070). In addition to highly conserved sequences encompassing SNPs 148444 and 152413, population studies revealed strong signatures of natural selection for a 1 kb window covering the SNP 144716 in two human populations, the European American (π = 0.0072, Tajima's D= 3.31, 14 SNPs) and the Japanese (π = 0.0049, Fay & Wu's H = 8.05, 14 SNPs), as well as in chimpanzees (Fay & Wu's H = 8.62, 12 SNPs). These results strongly support the involvement of the FHIT intronic region in an increased risk of prostate cancer. © 2008 Ding et al

    A fast algorithm for genome-wide haplotype pattern mining

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Identifying the genetic components of common diseases has long been an important area of research. Recently, genotyping technology has reached the level where it is cost effective to genotype single nucleotide polymorphism (SNP) markers covering the entire genome, in thousands of individuals, and analyse such data for markers associated with a diseases. The statistical power to detect association, however, is limited when markers are analysed one at a time. This can be alleviated by considering multiple markers simultaneously. The <it>Haplotype Pattern Mining </it>(HPM) method is a machine learning approach to do exactly this.</p> <p>Results</p> <p>We present a new, faster algorithm for the HPM method. The new approach use patterns of haplotype diversity in the genome: locally in the genome, the number of observed haplotypes is much smaller than the total number of possible haplotypes. We show that the new approach speeds up the HPM method with a factor of 2 on a genome-wide dataset with 5009 individuals typed in 491208 markers using default parameters and more if the pattern length is increased.</p> <p>Conclusion</p> <p>The new algorithm speeds up the HPM method and we show that it is feasible to apply HPM to whole genome association mapping with thousands of individuals and hundreds of thousands of markers.</p

    PGA: power calculator for case-control genetic association analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Statistical power calculations inform the design and interpretation of genetic association studies, but few programs are tailored to case-control studies of single nucleotide polymorphisms (SNPs) in unrelated subjects.</p> <p>Results</p> <p>We have developed the "Power for Genetic Association analyses" (PGA) package which comprises algorithms and graphical user interfaces for sample size and minimum detectable risk calculations using SNP or haplotype effects under different genetic models and study constrains. The software accounts for linkage disequilibrium and statistical multiple comparisons. The results are presented in graphs or tables and can be printed or exported in standard file formats.</p> <p>Conclusion</p> <p>PGA is user friendly software that can facilitate decision making for association studies of candidate genes, fine-mapping studies, and whole-genome scans. Stand-alone executable files and a Matlab toolbox are available for download at: <url>http://dceg.cancer.gov/bb/tools/pga</url></p

    Urologists’ and GPs’ knowledge of hereditary prostate cancer is suboptimal for prostate cancer counseling: a nation-wide survey in The Netherlands

    Get PDF
    A family history of prostate cancer (PCa) is an established risk factor for PCa. In case of a positive family history, the balance between positive and adverse effects of prostate-specific antigen (PSA) testing might be different from the general population, for which the European Randomized Study of Screening for Prostate Cancer (ERSPC) showed a beneficial effect on mortality. This, however, went at the cost of considerable overtreatment. This study assessed Dutch physicians’ knowledge of heredity and PCa and their ‘post-ERSPC’ attitude towards PCa testing, including consideration of family history. In January 2010, all Dutch urologists and clinical geneticists (CGs) and 300 general practitioners (GPs) were invited by email to complete an anonymous online survey, which contained questions about hereditary PCa and their attitudes towards PCa case-finding and screening. 109 urologists (31%), 69 GPs (23%) and 46 CGs (31%) completed the survey. CGs had the most accurate knowledge of hereditary PCa. All but 1 CG mentioned at least one inherited trait with PCa, compared to only 25% of urologists and 9% of GPs. CGs hardly ever counseled men about PCa testing. Most urologists and GPs discuss possible risks and benefits before testing for PCa with PSA. Remarkably, 35–40% of them do not take family history into consideration. Knowledge of urologists and GPs about heredity and PCa is suboptimal. Hence, PCa counseling might not be optimal for men with a positive family history. Multidisciplinary guidelines on this topic should be developed to optimize personalized counseling

    Analysis of Xq27-28 linkage in the international consortium for prostate cancer genetics (ICPCG) families.

    Get PDF
    BACKGROUND: Genetic variants are likely to contribute to a portion of prostate cancer risk. Full elucidation of the genetic etiology of prostate cancer is difficult because of incomplete penetrance and genetic and phenotypic heterogeneity. Current evidence suggests that genetic linkage to prostate cancer has been found on several chromosomes including the X; however, identification of causative genes has been elusive. METHODS: Parametric and non-parametric linkage analyses were performed using 26 microsatellite markers in each of 11 groups of multiple-case prostate cancer families from the International Consortium for Prostate Cancer Genetics (ICPCG). Meta-analyses of the resultant family-specific linkage statistics across the entire 1,323 families and in several predefined subsets were then performed. RESULTS: Meta-analyses of linkage statistics resulted in a maximum parametric heterogeneity lod score (HLOD) of 1.28, and an allele-sharing lod score (LOD) of 2.0 in favor of linkage to Xq27-q28 at 138 cM. In subset analyses, families with average age at onset less than 65 years exhibited a maximum HLOD of 1.8 (at 138 cM) versus a maximum regional HLOD of only 0.32 in families with average age at onset of 65 years or older. Surprisingly, the subset of families with only 2-3 affected men and some evidence of male-to-male transmission of prostate cancer gave the strongest evidence of linkage to the region (HLOD = 3.24, 134 cM). For this subset, the HLOD was slightly increased (HLOD = 3.47 at 134 cM) when families used in the original published report of linkage to Xq27-28 were excluded. CONCLUSIONS: Although there was not strong support for linkage to the Xq27-28 region in the complete set of families, the subset of families with earlier age at onset exhibited more evidence of linkage than families with later onset of disease. A subset of families with 2-3 affected individuals and with some evidence of male to male disease transmission showed stronger linkage signals. Our results suggest that the genetic basis for prostate cancer in our families is much more complex than a single susceptibility locus on the X chromosome, and that future explorations of the Xq27-28 region should focus on the subset of families identified here with the strongest evidence of linkage to this region.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Evidence of marine ice-cliff instability in Pine Island Bay from iceberg-keel plough marks.

    Get PDF
    Marine ice-cliff instability (MICI) processes could accelerate future retreat of the Antarctic Ice Sheet if ice shelves that buttress grounding lines more than 800 metres below sea level are lost. The present-day grounding zones of the Pine Island and Thwaites glaciers in West Antarctica need to retreat only short distances before they reach extensive retrograde slopes. When grounding zones of glaciers retreat onto such slopes, theoretical considerations and modelling results indicate that the retreat becomes unstable (marine ice-sheet instability) and thus accelerates. It is thought that MICI is triggered when this retreat produces ice cliffs above the water line with heights approaching about 90 metres. However, observational evidence confirming the action of MICI has not previously been reported. Here we present observational evidence that rapid deglacial ice-sheet retreat into Pine Island Bay proceeded in a similar manner to that simulated in a recent modelling study, driven by MICI. Iceberg-keel plough marks on the sea-floor provide geological evidence of past and present iceberg morphology, keel depth and drift direction. From the planform shape and cross-sectional morphologies of iceberg-keel plough marks, we find that iceberg calving during the most recent deglaciation was not characterized by small numbers of large, tabular icebergs as is observed today, which would produce wide, flat-based plough marks or toothcomb-like multi-keeled plough marks. Instead, it was characterized by large numbers of smaller icebergs with V-shaped keels. Geological evidence of the form and water-depth distribution of the plough marks indicates calving-margin thicknesses equivalent to the threshold that is predicted to trigger ice-cliff structural collapse as a result of MICI. We infer rapid and sustained ice-sheet retreat driven by MICI, commencing around 12,300 years ago and terminating before about 11,200 years ago, which produced large numbers of icebergs smaller than the typical tabular icebergs produced today. Our findings demonstrate the effective operation of MICI in the past, and highlight its potential contribution to accelerated future retreat of the Antarctic Ice Sheet
    corecore