115 research outputs found

    Reproductive competition triggers mass eviction in cooperative banded mongooses

    Get PDF
    In many vertebrate societies, forced eviction of group members is an important determinant of population structure, but little is known about what triggers eviction. Three main explanations are (1) the reproductive competition hypothesis; (2) the coercion of cooperation hypothesis; and (3) the adaptive forced dispersal hypothesis. The last hypothesis proposes that dominant individuals use eviction as an adaptive strategy to propagate copies of their alleles through a highly structured population. We tested these hypotheses as explanations for eviction in cooperatively breeding banded mongooses (Mungos mungo), using a 16-year dataset on life history, behaviour and relatedness. In this species, groups of females, or mixed-sex groups, are periodically evicted en masse. Our evidence suggests that reproductive competition is the main ultimate trigger for eviction for both sexes. We find little evidence that mass eviction is used to coerce helping, or as a mechanism to force dispersal of relatives into the population. Eviction of females changes the landscape of reproductive competition for remaining males, which may explain why males are evicted alongside females. Our results show that the consequences of resolving within-group conflict resonate through groups and populations to affect population structure, with important implications for social evolution

    Neural Correlates of Visual Aesthetics – Beauty as the Coalescence of Stimulus and Internal State

    Get PDF
    How do external stimuli and our internal state coalesce to create the distinctive aesthetic pleasures that give vibrance to human experience? Neuroaesthetics has so far focused on the neural correlates of observing beautiful stimuli compared to neutral or ugly stimuli, or on neural correlates of judging for beauty as opposed to other judgments. Our group questioned whether this approach is sufficient. In our view, a brain region that assesses beauty should show beauty-level-dependent activation during the beauty judgment task, but not during other, unrelated tasks. We therefore performed an fMRI experiment in which subjects judged visual textures for beauty, naturalness and roughness. Our focus was on finding brain activation related to the rated beauty level of the stimuli, which would take place exclusively during the beauty judgment. An initial whole-brain analysis did not reveal such interactions, yet a number of the regions showing main effects of the judgment task or the beauty level of stimuli were selectively sensitive to beauty level during the beauty task. Of the regions that were more active during beauty judgments than roughness judgments, the frontomedian cortex and the amygdala demonstrated the hypothesized interaction effect, while the posterior cingulate cortex did not. The latter region, which only showed a task effect, may play a supporting role in beauty assessments, such as attending to one's internal state rather than the external world. Most of the regions showing interaction effects of judgment and beauty level correspond to regions that have previously been implicated in aesthetics using different stimulus classes, but based on either task or beauty effects alone. The fact that we have now shown that task-stimulus interactions are also present during the aesthetic judgment of visual textures implies that these areas form a network that is specifically devoted to aesthetic assessment, irrespective of the stimulus type

    Female reproductive competition explains variation in prenatal investment in wild banded mongooses

    Get PDF
    PublishedArticleFemale intrasexual competition is intense in cooperatively breeding species where offspring compete locally for resources and helpers. In mammals, females have been proposed to adjust prenatal investment according to the intensity of competition in the postnatal environment (a form of ‘predictive adaptive response’; PAR). We carried out a test of this hypothesis using ultrasound scanning of wild female banded mongooses in Uganda. In this species multiple females give birth together to a communal litter, and all females breed regularly from one year old. Total prenatal investment (size times the number of fetuses) increased with the number of potential female breeders in the group. This relationship was driven by fetus size rather than number. The response to competition was particularly strong in low weight females and when ecological conditions were poor. Increased prenatal investment did not trade off against maternal survival. In fact we found the opposite relationship: females with greater levels of prenatal investment had elevated postnatal maternal survival. Our results support the hypothesis that mammalian prenatal development is responsive to the intensity of postnatal competition. Understanding whether these responses are adaptive requires information on the long-term consequences of prenatal investment for offspring fitness.ER

    Different Temporal Structure for Form versus Surface Cortical Color Systems – Evidence from Chromatic Non-Linear VEP

    Get PDF
    Physiological studies of color processing have typically measured responses to spatially varying chromatic stimuli such as gratings, while psychophysical studies of color include color naming, color and light, as well as spatial and temporal chromatic sensitivities. This raises the question of whether we have one or several cortical color processing systems. Here we show from non-linear analysis of human visual evoked potentials (VEP) the presence of distinct and independent temporal signatures for form and surface color processing. Surface color stimuli produced most power in the second order Wiener kernel, indicative of a slowly recovering neural system, while chromatic form stimulation produced most power in the first order kernel (showing rapid recovery). We find end-spectral saturation-dependent signals, easily separable from achromatic signals for surface color stimuli. However physiological responses to form color stimuli, though varying somewhat with saturation, showed similar waveform components. Lastly, the spectral dependence of surface and form color VEP was different, with the surface color responses almost vanishing with yellow-grey isoluminant stimulation whereas the form color VEP shows robust recordable signals across all hues. Thus, surface and form colored stimuli engage different neural systems within cortex, pointing to the need to establish their relative contributions under the diverse chromatic stimulus conditions used in the literature

    Shared neural representations of tactile roughness intensities by somatosensation and touch observation using an associative learning method

    Get PDF
    Previous human fMRI studies have reported activation of somatosensory areas not only during actual touch, but also during touch observation. However, it has remained unclear how the brain encodes visually evoked tactile intensities. Using an associative learning method, we investigated neural representations of roughness intensities evoked by (a) tactile explorations and (b) visual observation of tactile explorations. Moreover, we explored (c) modality-independent neural representations of roughness intensities using a cross-modal classification method. Case (a) showed significant decoding performance in the anterior cingulate cortex (ACC) and the supramarginal gyrus (SMG), while in the case (b), the bilateral posterior parietal cortices, the inferior occipital gyrus, and the primary motor cortex were identified. Case (c) observed shared neural activity patterns in the bilateral insula, the SMG, and the ACC. Interestingly, the insular cortices were identified only from the cross-modal classification, suggesting their potential role in modality-independent tactile processing. We further examined correlations of confusion patterns between behavioral and neural similarity matrices for each region. Significant correlations were found solely in the SMG, reflecting a close relationship between neural activities of SMG and roughness intensity perception. The present findings may deepen our understanding of the brain mechanisms underlying intensity perception of tactile roughness

    Multidimensional Characterization and Differentiation of Neurons in the Anteroventral Cochlear Nucleus

    Get PDF
    Multiple parallel auditory pathways ascend from the cochlear nucleus. It is generally accepted that the origin of these pathways are distinct groups of neurons differing in their anatomical and physiological properties. In extracellular in vivo recordings these neurons are typically classified on the basis of their peri-stimulus time histogram. In the present study we reconsider the question of classification of neurons in the anteroventral cochlear nucleus (AVCN) by taking a wider range of response properties into account. The study aims at a better understanding of the AVCN's functional organization and its significance as the source of different ascending auditory pathways. The analyses were based on 223 neurons recorded in the AVCN of the Mongolian gerbil. The range of analysed parameters encompassed spontaneous activity, frequency coding, sound level coding, as well as temporal coding. In order to categorize the unit sample without any presumptions as to the relevance of certain response parameters, hierarchical cluster analysis and additional principal component analysis were employed which both allow a classification on the basis of a multitude of parameters simultaneously. Even with the presently considered wider range of parameters, high number of neurons and more advanced analytical methods, no clear boundaries emerged which would separate the neurons based on their physiology. At the current resolution of the analysis, we therefore conclude that the AVCN units more likely constitute a multi-dimensional continuum with different physiological characteristics manifested at different poles. However, more complex stimuli could be useful to uncover physiological differences in future studies

    Biallelic mutations in IRF8 impair human NK cell maturation and function

    Get PDF
    Human NK cell deficiencies are rare yet result in severe and often fatal disease, particularly as a result of viral susceptibility. NK cells develop from hematopoietic stem cells, and few monogenic errors that specifically interrupt NK cell development have been reported. Here we have described biallelic mutations in IRF8, which encodes an interferon regulatory factor, as a cause of familial NK cell deficiency that results in fatal and severe viral disease. Compound heterozygous or homozygous mutations in IRF8 in 3 unrelated families resulted in a paucity of mature CD56dim NK cells and an increase in the frequency of the immature CD56bright NK cells, and this impairment in terminal maturation was also observed in Irf8–/–, but not Irf8+/–, mice. We then determined that impaired maturation was NK cell intrinsic, and gene expression analysis of human NK cell developmental subsets showed that multiple genes were dysregulated by IRF8 mutation. The phenotype was accompanied by deficient NK cell function and was stable over time. Together, these data indicate that human NK cells require IRF8 for development and functional maturation and that dysregulation of this function results in severe human disease, thereby emphasizing a critical role for NK cells in human antiviral defense

    Reliability of Synaptic Transmission at the Synapses of Held In Vivo under Acoustic Stimulation

    Get PDF
    BACKGROUND:The giant synapses of Held play an important role in high-fidelity auditory processing and provide a model system for synaptic transmission at central synapses. Whether transmission of action potentials can fail at these synapses has been investigated in recent studies. At the endbulbs of Held in the anteroventral cochlear nucleus (AVCN) a consistent picture emerged, whereas at the calyx of Held in the medial nucleus of the trapezoid body (MNTB) results on the reliability of transmission remain inconsistent. In vivo this discrepancy could be due to the difficulty in identifying failures of transmission. METHODS/FINDINGS:We introduce a novel method for detecting unreliable transmission in vivo. Based on the temporal relationship between a cells' waveform and other potentials in the recordings, a statistical test is developed that provides a balanced decision between the presence and the absence of failures. Its performance is quantified using simulated voltage recordings and found to exhibit a high level of accuracy. The method was applied to extracellular recordings from the synapses of Held in vivo. At the calyces of Held failures of transmission were found only rarely. By contrast, at the endbulbs of Held in the AVCN failures were found under spontaneous, excited, and suppressed conditions. In accordance with previous studies, failures occurred most abundantly in the suppressed condition, suggesting a role for inhibition. CONCLUSIONS/SIGNIFICANCE:Under the investigated activity conditions/anesthesia, transmission seems to remain largely unimpeded in the MNTB, whereas in the AVCN the occurrence of failures is related to inhibition and could be the basis/result of computational mechanisms for temporal processing. More generally, our approach provides a formal tool for studying the reliability of transmission with high statistical accuracy under typical in vivo recording conditions

    Paternity of Subordinates Raises Cooperative Effort in Cichlids

    Get PDF
    Background In cooperative breeders, subordinates generally help a dominant breeding pair to raise offspring. Parentage studies have shown that in several species subordinates can participate in reproduction. This suggests an important role of direct fitness benefits for cooperation, particularly where groups contain unrelated subordinates. In this situation parentage should influence levels of cooperation. Here we combine parentage analyses and detailed behavioural observations in the field to study whether in the highly social cichlid Neolamprologus pulcher subordinates participate in reproduction and if so, whether and how this affects their cooperative care, controlling for the effect of kinship. Methodology/Principal Findings We show that: (i) male subordinates gained paternity in 27.8% of all clutches and (ii) if they participated in reproduction, they sired on average 11.8% of young. Subordinate males sharing in reproduction showed more defence against experimentally presented egg predators compared to subordinates not participating in reproduction, and they tended to stay closer to the breeding shelter. No effects of relatedness between subordinates and dominants (to mid-parent, dominant female or dominant male) were detected on parentage and on helping behaviour. Conclusions/Significance This is the first evidence in a cooperatively breeding fish species that the helping effort of male subordinates may depend on obtained paternity, which stresses the need to consider direct fitness benefits in evolutionary studies of helping behaviour

    Paternity and Dominance Loss in Male Breeders: The Cost of Helpers in a Cooperatively Breeding Mammal

    Get PDF
    Paternity insurance and dominance tenure length are two important components of male reproductive success, particularly in species where reproduction is highly skewed towards a few individuals. Identifying the factors affecting these two components is crucial to better understand the pattern of variation in reproductive success among males. In social species, the social context (i.e. group size and composition) is likely to influence the ability of males to secure dominance and to monopolize reproduction. Most studies have analyzed the factors affecting paternity insurance and dominance tenure separately. We use a long term data set on Alpine marmots to investigate the effect of the number of subordinate males on both paternity insurance and tenure of dominant males. We show that individuals which are unable to monopolize reproduction in their family groups in the presence of many subordinate males are likely to lose dominance the following year. We also report that dominant males lose body mass in the year they lose both paternity and dominance. Our results suggest that controlling many subordinate males is energetically costly for dominant males, and those unable to support this cost lose the control over both reproduction and dominance. A large number of subordinate males in social groups is therefore costly for dominant males in terms of fitness
    corecore