190 research outputs found

    Patient advocate involvement in the design and conduct of breast cancer clinical trials requiring the collection of multiple biopsies.

    Get PDF
    Plain english summary Breast cancer is a diverse and varied disease. Recent research has shown that the collection of multiple biopsies before surgery can help researchers determine how the cancer is responding to treatment and can predict for long-term outcomes. However biopsies can be uncomfortable, and sometimes clinicians and research teams in hospitals may be reluctant to offer clinical trials requiring several biopsies to patients who have been recently diagnosed with breast cancer. The Institute of Cancer Research Clinical Trials and Statistics Unit (ICR-CTSU) oversees a large number of breast cancer clinical trials where multiple biopsies are required. ICR-CTSU recognises that patient advocates (patients who have previously had, or cared for someone with, cancer) are key members of the trial design group and should be involved in the clinical trial throughout its lifespan. Patient advocates can provide reassurance regarding the acceptability of trial designs involving multiple biopsies from a patient perspective. This paper summarises patient advocate involvement in ICR-CTSU breast cancer trials activity and how this has benefited our research.Abstract The importance of collecting tissue samples in breast cancer has become increasingly recognised, as the diversity of the disease has become better known. It has been documented in recent research that tumours may change in response to treatment prior to surgery (the neoadjuvant treatment setting). The collection of sequential biopsies over time can identify changes within tumours and potentially predict how the tumour may respond to certain treatments. However, the acceptability of multiple biopsies amongst patients, clinicians and other research staff in hospitals is variable and recruitment into clinical trials requiring multiple biopsies may be challenging.The Institute of Cancer Research Clinical Trials and Statistics Unit (ICR-CTSU) is responsible for a portfolio of breast cancer trials where multiple biopsies are key to the trial design. Patient advocate involvement has been essential in helping us to design and deliver complex and innovative cancer trials which require multiple invasive tissue biopsies, often without any direct benefit to the trial participants. The views expressed by patient advocates involved in ICR-CTSU trials supports the published evidence that patients are willing to donate additional tissue for research and that clinicians' concerns about approaching patients for trials involving multiple biopsies are often unfounded.Patient advocate involvement in ICR-CTSU trials activity takes various forms, from membership on protocol development groups and trial management groups, attendance at focus groups and forums, and presentations at trial development and launch meetings. This involvement has provided reassurance to research teams within the NHS and research ethics committees of the importance and acceptability of our trials from a patient perspective. Patient advocate involvement throughout the lifetime of our trials ensures that the patient remains central to our research considerations

    Type I IFN Promotes IL-10 Production from T Cells to Suppress Th17 Cells and Th17-Associated Autoimmune Inflammation

    Get PDF
    Whereas the immune system is essential for host defense against pathogen infection or endogenous danger signals, dysregulated innate and adaptive immune cells may facilitate harmful inflammatory or autoimmune responses. In the CNS, chronic inflammation plays an important role in the pathogenesis of neurodegenerative diseases such as multiple sclerosis (MS). Our previous study has demonstrated a critical role for the type I IFN induction and signaling pathways in constraining Th17-mediated experimental autoimmune encephalomyelitis (EAE), an animal model of human MS. However, it remains unknown if self-reactive Th17 cells can be reprogrammed to have less encephalitogenic activities or even have regulatory effects through modulation of innate pathways. In this study, we investigated the direct effects of type I IFN on Th17 cells. Our data show that IFNβ treatment of T cells cultured under Th17 polarizing conditions resulted in reduced production of IL-17, but increased production of IL-10. We also found that IFNβ induced IL-10 production by antigen specific T cells derived from immunized mice. Furthermore, IFNβ treatment could suppress the encephalitogenic activity of myelin-specific T cells, and ameliorate clinical symptoms of EAE in an adoptive transfer model. Together, results from this study suggest that IFNβ may induce antigen-specific T cells to produce IL-10, which in turn negatively regulate Th17-mediate inflammatory and autoimmune response

    Molecular decoding using luminescence from an entangled porous framework

    Get PDF
    Chemosensors detect a single target molecule from among several molecules, but cannot differentiate targets from one another. In this study, we report a molecular decoding strategy in which a single host domain accommodates a class of molecules and distinguishes between them with a corresponding readout. We synthesized the decoding host by embedding naphthalenediimide into the scaffold of an entangled porous framework that exhibited structural dynamics due to the dislocation of two chemically non-interconnected frameworks. An intense turn-on emission was observed on incorporation of a class of aromatic compounds, and the resulting luminescent colour was dependent on the chemical substituent of the aromatic guest. This unprecedented chemoresponsive, multicolour luminescence originates from an enhanced naphthalenediimide–aromatic guest interaction because of the induced-fit structural transformation of the entangled framework. We demonstrate that the cooperative structural transition in mesoscopic crystal domains results in a nonlinear sensor response to the guest concentration

    BAFF Promotes Th17 Cells and Aggravates Experimental Autoimmune Encephalomyelitis

    Get PDF
    BAFF, in addition to promoting B cell survival and differentiation, may affect T cells. The objective of this study was to determine the effect of BAFF on Th17 cell generation and its ramifications for the Th17 cell-driven disease, EAE.Th17 cells were increased in BAFF-Tg B6 (B6.BTg) mice and decreased in B6.Baff(-/-) mice. Th17 cells in B6.Baff(-/-) mice bearing a BAFF Tg (B6.Baff(-/-).BTg mice) were identical to those in B6.BTg mice, indicating that membrane BAFF is dispensable for Th17 cell generation as long as soluble BAFF is plentiful. In T + non-T cell criss-cross co-cultures, Th17 cell generation was greatest in cultures containing B6.BTg T cells and lowest in cultures containing B6.Baff(-/-) T cells, regardless of the source of non-T cells. In cultures containing only T cells, Th17 cell generation followed an identical pattern. CD4(+) cell expression of CD126 (IL-6R α chain) was increased in B6.BTg mice and decreased in B6.Baff(-/-) mice, and activation of STAT3 following stimulation with IL-6 + TGF-β was also greatest in B6.BTg cells and lowest in B6.Baff(-/-) cells. EAE was clinically and pathologically most severe in B6.BTg mice and least severe in B6.Baff(-/-) mice and correlated with MOG(35-55) peptide-induced Th17 cell responses.Collectively, these findings document a contribution of BAFF to pathogenic Th17 cell responses and suggest that BAFF antagonism may be efficacious in Th17 cell-driven diseases

    Phenotypic Characterization of Autoreactive B Cells—Checkpoints of B Cell Tolerance in Patients with Systemic Lupus Erythematosus

    Get PDF
    DNA-reactive B cells play a central role in systemic lupus erythematosus (SLE); DNA antibodies precede clinical disease and in established disease correlate with renal inflammation and contribute to dendritic cell activation and high levels of type 1 interferon. A number of central and peripheral B cell tolerance mechanisms designed to control the survival, differentiation and activation of autoreactive B cells are thought to be disturbed in patients with SLE. The characterization of DNA-reactive B cells has, however, been limited by their low frequency in peripheral blood. Using a tetrameric configuration of a peptide mimetope of DNA bound by pathogenic anti-DNA antibodies, we can identify B cells producing potentially pathogenic DNA-reactive antibodies. We, therefore, characterized the maturation and differentiation states of peptide, (ds) double stranded DNA cross-reactive B cells in the peripheral blood of lupus patients and correlated these with clinical disease activity. Flow cytometric analysis demonstrated a significantly higher frequency of tetramer-binding B cells in SLE patients compared to healthy controls. We demonstrated the existence of a novel tolerance checkpoint at the transition of antigen-naïve to antigen-experienced. We further demonstrate that patients with moderately active disease have more autoreactive B cells in both the antigen-naïve and antigen-experienced compartments consistent with greater impairment in B cell tolerance in both early and late checkpoints in these patients than in patients with quiescent disease. This methodology enables us to gain insight into the development and fate of DNA-reactive B cells in individual patients with SLE and paves the way ultimately to permit better and more customized therapies

    School Effects on the Wellbeing of Children and Adolescents

    Get PDF
    Well-being is a multidimensional construct, with psychological, physical and social components. As theoretical basis to help understand this concept and how it relates to school, we propose the Self-Determination Theory, which contends that self-determined motivation and personality integration, growth and well-being are dependent on a healthy balance of three innate psychological needs of autonomy, relatedness and competence. Thus, current indicators involve school effects on children’s well-being, in many diverse modalities which have been explored. Some are described in this chapter, mainly: the importance of peer relationships; the benefits of friendship; the effects of schools in conjunction with some forms of family influence; the school climate in terms of safety and physical ecology; the relevance of the teacher input; the school goal structure and the implementation of cooperative learning. All these parameters have an influence in promoting optimal functioning among children and increasing their well-being by meeting the above mentioned needs. The empirical support for the importance of schools indicates significant small effects, which often translate into important real-life effects as it is admitted at present. The conclusion is that schools do make a difference in children’s peer relationships and well-being

    IL-27 Regulates IL-18 Binding Protein in Skin Resident Cells

    Get PDF
    IL-18 is an important mediator involved in chronic inflammatory conditions such as cutaneous lupus erythematosus, psoriasis and chronic eczema. An imbalance between IL-18 and its endogenous antagonist IL-18 binding protein (BP) may account for increased IL-18 activity. IL-27 is a cytokine with dual function displaying pro- and anti-inflammatory properties. Here we provide evidence for a yet not described anti-inflammatory mode of action on skin resident cells. Human keratinocytes and surprisingly also fibroblasts (which do not produce any IL-18) show a robust, dose-dependent and highly inducible mRNA expression and secretion of IL-18BP upon IL-27 stimulation. Other IL-12 family members failed to induce IL-18BP. The production of IL-18BP peaked between 48–72 h after stimulation and was sustained for up to 96 h. Investigation of the signalling pathway showed that IL-27 activates STAT1 in human keratinocytes and that a proximal GAS site at the IL-18BP promoter is of importance for the functional activity of IL-27. The data are in support of a significant anti-inflammatory effect of IL-27 on skin resident cells. An important novel property of IL-27 in skin pathobiology may be to counter-regulate IL-18 activities by acting on keratinocytes and importantly also on dermal fibroblasts

    Restrained Th17 response and myeloid cell infiltration into the central nervous system by human decidua-derived mesenchymal stem cells during experimental autoimmune encephalomyelitis

    Get PDF
    Background: Multiple sclerosis is a widespread inflammatory demyelinating disease. Several immunomodulatory therapies are available, including interferon-β, glatiramer acetate, natalizumab, fingolimod, and mitoxantrone. Although useful to delay disease progression, they do not provide a definitive cure and are associated with some undesirable side-effects. Accordingly, the search for new therapeutic methods constitutes an active investigation field. The use of mesenchymal stem cells (MSCs) to modify the disease course is currently the subject of intense interest. Decidua-derived MSCs (DMSCs) are a cell population obtained from human placental extraembryonic membranes able to differentiate into the three germ layers. This study explores the therapeutic potential of DMSCs. Methods: We used the experimental autoimmune encephalomyelitis (EAE) animal model to evaluate the effect of DMSCs on clinical signs of the disease and on the presence of inflammatory infiltrates in the central nervous system. We also compared the inflammatory profile of spleen T cells from DMSC-treated mice with that of EAE control animals, and the influence of DMSCs on the in vitro definition of the Th17 phenotype. Furthermore, we analyzed the effects on the presence of some critical cell types in central nervous system infiltrates. Results: Preventive intraperitoneal injection of DMSCs resulted in a significant delay of external signs of EAE. In addition, treatment of animals already presenting with moderate symptoms resulted in mild EAE with reduced disease scores. Besides decreased inflammatory infiltration, diminished percentages of CD4+IL17+, CD11b+Ly6G+ and CD11b+Ly6C+ cells were found in infiltrates of treated animals. Early immune response was mitigated, with spleen cells of DMSC-treated mice displaying low proliferative response to antigen, decreased production of interleukin (IL)-17, and increased production of the anti-inflammatory cytokines IL-4 and IL-10. Moreover, lower RORγT and higher GATA-3 expression levels were detected in DMSC-treated mice. DMSCs also showed a detrimental influence on the in vitro definition of the Th17 phenotype. Conclusions: DMSCs modulated the clinical course of EAE, modified the frequency and cell composition of the central nervous system infiltrates during the disease, and mediated an impairment of Th17 phenotype establishment in favor of the Th2 subtype. These results suggest that DMSCs might provide a new cell-based therapy for the control of multiple sclerosis.This work was sponsored by grants from Acción Estratégica en Salud (PI13/00297 and PI11/00581), the Neurosciences and Aging Foundation, the Francisco Soria Melguizo Foundation, Octopharma, and Parkinson Madrid (PI2012/0032).S

    Thyroid and pituitary gland development from hatching through metamorphosis of a teleost flatfish, the Atlantic halibut

    Get PDF
    Fish larval development, not least the spectacular process of flatfish metamorphosis, appears to be under complex endocrine control, many aspects of which are still not fully elucidated. In order to obtain data on the functional development of two major endocrine glands, the pituitary and the thyroid, during flatfish metamorphosis, histology, immunohistochemistry and in situ hybridization techniques were applied on larvae of the Atlantic halibut (Hippoglossus hippoglossus), a large, marine flatfish species, from hatching through metamorphosis. The material was obtained from a commercial hatchery. Larval age is defined as day-degrees (D =accumulated daily temperature from hatching). Sporadic thyroid follicles are first detected in larvae at 142 D (27 days post-hatch), prior to the completion of yolk sack absorption. Both the number and activity of the follicles increase markedly after yolk sack absorption and continue to do so during subsequent development. The larval triiodothyronine (T3) and thyroxine (T4) content increases, subsequent to yolk absorption, and coincides with the proliferation of thyroid follicles. A second increase of both T3 and T4 occurs around the start of metamorphosis and the T3 content further increases at the metamorphic climax. Overall, the T3 content is lower than T4. The pituitary gland can first be distinguished as a separate organ at the yolk sack stage. During subsequent development, the gland becomes more elongated and differentiates into neurohypophysis (NH), pars distalis (PD) and pars intermedia (PI). The first sporadic endocrine pituitary cells are observed at the yolk sack stage, somatotrophs (growth hormone producing cells) and somatolactotrophs (somatolactin producing cells) are first observed at 121 D (23 days post-hatch), and lactotrophs (prolactin producing cells) at 134 D (25 days post-hatch). Scarce thyrotrophs are evident after detection of the first thyroid follicles (142 D ), but coincident with a phase in which follicle number and activity increase (260 D ). The somatotrophs are clustered in the medium ventral region of the PD, lactotrophs in the anterior part of the PD and somatolactotrophs are scattered in the mid and posterior region of the pituitary. At around 600 D , coinciding with the start of metamorphosis, somatolactotrophs are restricted to the interdigitating tissue of the NH. During larval development, the pituitary endocrine cells become more numerous. The present data on thyroid development support the notion that thyroid hormones may play a significant role in Atlantic halibut metamorphosis. The time of appearance and the subsequent proliferation of pituitary somatotrophs, lactotrophs, somatolactotrophs and thyrotrophs indicate at which stages of larval development and metamorphosis these endocrine cells may start to play active regulatory roles.This work has been carried out within the projects ‘‘Endocrine Control as a Determinant of Larval Quality in Fish Aquaculture’’ (CT-96-1422) and ‘‘Arrested development: The Molecular and Endocrine Basis of Flatfish Metamorphosis’’ (Q5RS-2002-01192), with financial support from the Commission of the European Communities. However, it does not necessarily reflect the Commission’s views and in no way anticipates its future policy in this area. This project was further supported by the Swedish Council for Agricultural and Forestry Research and Pluriannual funding to CCMAR by the Portuguese Science and Technology Council
    corecore