51 research outputs found

    Metallosupramolecular self-assembly of a universal 3-ravel

    Get PDF
    In the realm of supramolecular chemistry, a small number of intricately interwoven structures that bridge the boundaries between art and science have been reported. These motifs, which typically form on the nanometre scale, display both considerable beauty and complexity. However, the generation of new topologies of this type has remained a very significant synthetic challenge. Here, we describe the synthesis of a discrete highly intertwined metallosupramolecular assembly based on a universal 3-ravel motif—a topology as yet unprecedented in supramolecular chemistry. The exotic, 20-component, [Fe8L12] ravel entanglement may be considered as a 'branched knot', with individual molecules displaying either left- or right-handed chirality. The formation of this cluster was demonstrated by single-crystal and powder X-ray diffraction. The arrangement is stabilized by a favourable combination of π–π interactions and Nature's tendency to minimize voids in molecular architectures

    Acute deterioration of idiopathic portal hypertension requiring living donor liver transplantation: a case report.

    Get PDF
    Case reports of severe idiopathic portal hypertension (IPH) requiring liver transplantation are very rare. We report the case of a 65-year-old woman who was diagnosed as having IPH. At the age of 60 years, her initial symptom was hematemesis, due to ruptured esophageal varices. Computed tomography of the abdomen showed splenomegaly and a small amount of ascites, without liver cirrhosis. She was diagnosed as having IPH and followed-up as an outpatient. Five years later, she developed symptoms of a common cold and rapidly progressive abdominal distension. She was found to have severe liver atrophy, liver dysfunction, and massive ascites. Living donor liver transplantation was then performed, and her postoperative course was uneventful. Histopathological findings of the explanted liver showed collapse and stenosis of the peripheral portal vein. The areas of liver parenchyma were narrow, while the portal tracts and central veins were approximate one another, leading to a diagnosis of IPH. There was no liver cirrhosis. The natural history of refractory IPH could be observed in this case. Patients with end-stage liver failure due to severe IPH can be treated by liver transplantation

    Quantitative analysis of MicroRNAs in vaccinia virus infection reveals diversity in their susceptibility to modification and suppression

    Get PDF
    Vaccinia virus (VACV) is a large cytoplasmic DNA virus that causes dramatic alterations to many cellular pathways including microRNA biogenesis. The virus encodes a poly(A) polymerase which was previously shown to add poly(A) tails to the 3' end of cellular miRNAs, resulting in their degradation by 24 hours post infection (hpi). Here we used small RNA sequencing to quantify the impact of VACV infection on cellular miRNAs in human cells at both early (6 h) and late (24 h) times post infection. A detailed quantitative analysis of individual miRNAs revealed marked diversity in the extent of their modification and relative change in abundance during infection. Some miRNAs became highly modified (e.g. miR-29a-3p, miR-27b-3p) whereas others appeared resistant (e.g. miR-16-5p). Furthermore, miRNAs that were highly tailed at 6 hpi were not necessarily among the most reduced at 24 hpi. These results suggest that intrinsic features of human cellular miRNAs cause them to be differentially polyadenylated and altered in abundance during VACV infection. We also demonstrate that intermediate and late VACV gene expression are required for optimal repression of some miRNAs including miR-27-3p. Overall this work reveals complex and varied consequences of VACV infection on host miRNAs and identifies miRNAs which are largely resistant to VACV-induced polyadenylation and are therefore present at functional levels during the initial stages of infection and replication

    Systemic administration of IGF-I enhances healing in collagenous extracellular matrices: evaluation of loaded and unloaded ligaments

    Get PDF
    BACKGROUND: Insulin-like growth factor-I (IGF-I) plays a crucial role in wound healing and tissue repair. We tested the hypotheses that systemic administration of IGF-I, or growth hormone (GH), or both (GH+IGF-I) would improve healing in collagenous connective tissue, such as ligament. These hypotheses were examined in rats that were allowed unrestricted activity after injury and in animals that were subjected to hindlimb disuse. Male rats were assigned to three groups: ambulatory sham-control, ambulatory-healing, and hindlimb unloaded-healing. Ambulatory and hindlimb unloaded animals underwent surgical disruption of their knee medial collateral ligaments (MCLs), while sham surgeries were performed on control animals. Healing animals subcutaneously received systemic doses of either saline, GH, IGF-I, or GH+IGF-I. After 3 weeks, mechanical properties, cell and matrix morphology, and biochemical composition were examined in control and healing ligaments. RESULTS: Tissues from ambulatory animals receiving only saline had significantly greater strength than tissue from saline receiving hindlimb unloaded animals. Addition of IGF-I significantly improved maximum force and ultimate stress in tissues from both ambulatory and hindlimb unloaded animals with significant increases in matrix organization and type-I collagen expression. Addition of GH alone did not have a significant effect on either group, while addition of GH+IGF-I significantly improved force, stress, and modulus values in MCLs from hindlimb unloaded animals. Force, stress, and modulus values in tissues from hindlimb unloaded animals receiving IGF-I or GH+IGF-I exceeded (or were equivalent to) values in tissues from ambulatory animals receiving only saline with greatly improved structural organization and significantly increased type-I collagen expression. Furthermore, levels of IGF-receptor were significantly increased in tissues from hindlimb unloaded animals treated with IGF-I. CONCLUSION: These results support two of our hypotheses that systemic administration of IGF-I or GH+IGF-I improve healing in collagenous tissue. Systemic administration of IGF-I improves healing in collagenous extracellular matrices from loaded and unloaded tissues. Growth hormone alone did not result in any significant improvement contrary to our hypothesis, while GH + IGF-I produced remarkable improvement in hindlimb unloaded animals

    Regulation of microRNA biogenesis and turnover by animals and their viruses

    Get PDF
    Item does not contain fulltextMicroRNAs (miRNAs) are a ubiquitous component of gene regulatory networks that modulate the precise amounts of proteins expressed in a cell. Despite their small size, miRNA genes contain various recognition elements that enable specificity in when, where and to what extent they are expressed. The importance of precise control of miRNA expression is underscored by functional studies in model organisms and by the association between miRNA mis-expression and disease. In the last decade, identification of the pathways by which miRNAs are produced, matured and turned-over has revealed many aspects of their biogenesis that are subject to regulation. Studies in viral systems have revealed a range of mechanisms by which viruses target these pathways through viral proteins or non-coding RNAs in order to regulate cellular gene expression. In parallel, a field of study has evolved around the activation and suppression of antiviral RNA interference (RNAi) by viruses. Virus encoded suppressors of RNAi can impact miRNA biogenesis in cases where miRNA and small interfering RNA pathways converge. Here we review the literature on the mechanisms by which miRNA biogenesis and turnover are regulated in animals and the diverse strategies that viruses use to subvert or inhibit these processes

    Social Correlates of and Reasons for Primate Meat Consumption in Central Amazonia

    Get PDF
    Traditionally, humans have consumed nonhuman primates in many places, including throughout the Amazon region. However, primate consumption rates are changing with rising urbanization and market access. We characterize primate consumption in central Amazonia using 192 qualitative interviews with inhabitants in three rural villages and in the city of Tefé. We used a generalized linear model to investigate how individual consumer characteristics, such as age and gender, and livelihoods affected primate consumption. We also used principal coordinate analysis (PCoA), and word clouds and network text analyses, to describe reasons people gave for eating or avoiding primates. Our results show that men were more likely to say that they eat primates than women, and that the probability that a person said that they eat primates correlated positively with the percentage of their life lived in rural areas. People gave sentiment and ethical reasons not to eat primates. Custom influenced whether people said they eat primates both positively and negatively, while taste positively influenced whether people said they eat primates. A preference for other wild meats in rural areas, and for domestic meats in cities negatively influenced whether people said they eat primates. People also cited the perceptions that primates have a human-like appearance and that primate meat is unhealthy as reasons not to eat primates. People in urban areas also cited conservation attitudes as reasons for not eating primates. Our findings provide an understanding of factors influencing primate consumption in our study area and will be useful for designing tailored conservation initiatives by reducing hunting pressure on primates in rural settings and increasing the effectiveness of outreach campaigns in urban centers
    • …
    corecore