485 research outputs found
Perceptual Context in Cognitive Hierarchies
Cognition does not only depend on bottom-up sensor feature abstraction, but
also relies on contextual information being passed top-down. Context is higher
level information that helps to predict belief states at lower levels. The main
contribution of this paper is to provide a formalisation of perceptual context
and its integration into a new process model for cognitive hierarchies. Several
simple instantiations of a cognitive hierarchy are used to illustrate the role
of context. Notably, we demonstrate the use context in a novel approach to
visually track the pose of rigid objects with just a 2D camera
Hybrid silicon nanostructures with conductive ligands and their microscopic conductivities
Silicon nanoparticles (SiNPs) functionalized with conjugated molecules promise a potential pathway to generate a new category of thermoelectric materials. While the thermoelectric performance of materials based on phenyl-acetylene capped SiNPs has been proven, their low conductivity is still a problem for their general application. A muon study of phenyl-acetylene capped SiNPs has been recently carried out using the HiFi spectrometer at the Rutherford Appleton Laboratory, measuring the ALC spectra as a function of temperature. The results show a reduction in the measured line width of the resonance above room temperature, suggesting an activated behaviour for this system. This study shows that the muon study could be a powerful method to investigate microscopic conductivity of hybrid thermoelectric materials
On Semiclassical Limits of String States
We explore the relation between classical and quantum states in both open and
closed (super)strings discussing the relevance of coherent states as a
semiclassical approximation. For the closed string sector a gauge-fixing of the
residual world-sheet rigid translation symmetry of the light-cone gauge is
needed for the construction to be possible. The circular target-space loop
example is worked out explicitly.Comment: 12 page
Category label and response location shifts in category learning
The category shift literature suggests that rule-based classification, an important form of explicit learning, is mediated by two separate learned associations: a stimulus-to-label association that associates stimuli and category labels, and a label-to-response association that associates category labels and responses. Three experiments investigate whether information–integration classification, an important form of implicit learning, is also mediated by two separate learned associations. Participants were trained on a rule-based or an information–integration categorization task and then the association between stimulus and category label, or between category label and response location was altered. For rule-based categories, and in line with previous research, breaking the association between stimulus and category label caused more interference than breaking the association between category label and response location. However, no differences in recovery rate emerged. For information–integration categories, breaking the association between stimulus and category label caused more interference and led to greater recovery than breaking the association between category label and response location. These results provide evidence that information–integration category learning is mediated by separate stimulus-to-label and label-to-response associations. Implications for the neurobiological basis of these two learned associations are discussed
Recommended from our members
THE PHYSICAL SCALE OF THE FAR-INFRARED EMISSION IN THE MOST LUMINOUS SUBMILLIMETER GALAXIES
We present high-resolution submillimeter interferometric imaging of two of the brightest high-redshift submillimeter galaxies known: GN 20 and AzTEC1 at 0.8\u27\u27 and 0.3\u27\u27 resolution, respectively. Our data—the highest resolution submillimeter imaging of high-redshift sources accomplished to date—were collected in three different array configurations: compact, extended, and very extended. We derive angular sizes of 0.6\u27\u27 and 1.0\u27\u27 for GN 20 and 0.3\u27\u27 and 0.4\u27\u27 for AzTEC1 from modeling their visibility functions as a Gaussian and an elliptical disk, respectively. Because both sources are B-band dropouts, they likely lie within a relatively narrow redshift window around z ~ 4, which indicates their angular extent corresponds to physical scales of 4-8 and 1.5-3 kpc, respectively, for the starburst region. By way of a series of simple assumptions, we find preliminary evidence that these hyperluminous starbursts—with star formation rates \u3e1000 M yr−1—are radiating at or close to their Eddington limit. Should future high-resolution observations indicate that these two objects are typical of a population of high-redshift Eddington-limited starbursts, this could have important consequences for models of star formation and feedback in extreme environments
Altered synapse stability in the early stages of tauopathy
Synapse loss is a key feature of dementia, but it is unclear whether synaptic dysfunction precedes degenerative phases of the disease. Here, we show that even before any decrease in synapse density, there is abnormal turnover of cortical axonal boutons and dendritic spines in a mouse model of tauopathy-associated dementia. Strikingly, tauopathy drives a mismatch in synapse turnover; postsynaptic spines turn over more rapidly, whereas presynaptic boutons are stabilized. This imbalance between pre- and post-synaptic stability coincides with reduced synaptically driven neuronal activity in pre-degenerative stages of the disease
Recommended from our members
Towards a quantum probability theory of similarity judgments
We review recent progress in understanding similarity judgments in cognition by means of quantum probability theory (QP) models. We begin by outlining some features of similarity judgments that have proven difficult to model by traditional approaches. We then briefly present a model of similarity judgments based on QP, and show how it can solve many of the problems faced by traditional approaches. Finally we look at some areas where the quantum model is currently less satisfactory, and discuss some open questions and areas for further work
A Minimal Model of Metabolism Based Chemotaxis
Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better understand unexplored and poorly understood aspects of bacterial chemotaxis
Evidence for a population of high-redshift submillimeter galaxies from interferometric imaging
We have used the Submillimeter Array to image a flux-limited sample of seven submillimeter galaxies, selected by the AzTEC camera on the JCMT at 1.1 mm, in the COSMOS field at 890 μ m with ~2\u27\u27 resolution. All of the sources—two radio-bright and five radio-dim—are detected as single point sources at high significance (\u3e6 σ), with positions accurate to ~0.2\u27\u27 that enable counterpart identification at other wavelengths observed with similarly high angular resolution. All seven have IRAC counterparts, but only two have secure counterparts in deep HST ACS imaging. As compared to the two radio-bright sources in the sample, and those in previous studies, the five radio-dim sources in the sample (1) have systematically higher submillimeter-to-radio flux ratios, (2) have lower IRAC 3.6-8.0 μ m fluxes, and (3) are not detected at 24 μ m . These properties, combined with size constraints at 890 μ m (θ 1.2\u27\u27), suggest that the radio-dim submillimeter galaxies represent a population of very dusty starbursts, with physical scales similar to local ultraluminous infrared galaxies, with an average redshift higher than radio-bright sources
What we talk about when we talk about "global mindset": managerial cognition in multinational corporations
Recent developments in the global economy and in multinational corporations have placed significant emphasis on the cognitive orientations of managers, giving rise to a number of concepts such as “global mindset” that are presumed to be associated with the effective management of multinational corporations (MNCs). This paper reviews the literature on global mindset and clarifies some of the conceptual confusion surrounding the construct. We identify common themes across writers, suggesting that the majority of studies fall into one of three research perspectives: cultural, strategic, and multidimensional. We also identify two constructs from the social sciences that underlie the perspectives found in the literature: cosmopolitanism and cognitive complexity and use these two constructs to develop an integrative theoretical framework of global mindset. We then provide a critical assessment of the field of global mindset and suggest directions for future theoretical and empirical research
- …