86 research outputs found

    Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli

    Get PDF
    Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts.  Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins.  Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets

    Perspectives on the Trypanosoma cruzi-host cell receptor interaction

    Get PDF
    Chagas disease is caused by the parasite Trypanosoma cruzi. The critical initial event is the interaction of the trypomastigote form of the parasite with host receptors. This review highlights recent observations concerning these interactions. Some of the key receptors considered are those for thromboxane, bradykinin, and for the nerve growth factor TrKA. Other important receptors such as galectin-3, thrombospondin, and laminin are also discussed. Investigation into the molecular biology and cell biology of host receptors for T. cruzi may provide novel therapeutic targets

    Relevance of the Diversity among Members of the Trypanosoma Cruzi Trans-Sialidase Family Analyzed with Camelids Single-Domain Antibodies

    Get PDF
    The sialic acid present in the protective surface mucin coat of Trypanosoma cruzi is added by a membrane anchored trans-sialidase (TcTS), a modified sialidase that is expressed from a large gene family. In this work, we analyzed single domain camelid antibodies produced against trans-sialidase. Llamas were immunized with a recombinant trans-sialidase and inhibitory single-domain antibody fragments were obtained by phage display selection, taking advantage of a screening strategy using an inhibition test instead of the classic binding assay. Four single domain antibodies displaying strong trans-sialidase inhibition activity against the recombinant enzyme were identified. They share the same complementarity-determining region 3 length (17 residues) and have very similar sequences. This result indicates that they likely derived from a unique clone. Probably there is only one structural solution for tight binding inhibitory antibodies against the TcTS used for immunization. To our surprise, this single domain antibody that inhibits the recombinant TcTS, failed to inhibit the enzymatic activity present in parasite extracts. Analysis of individual recombinant trans-sialidases showed that enzymes expressed from different genes were inhibited to different extents (from 8 to 98%) by the llama antibodies. Amino acid changes at key positions are likely to be responsible for the differences in inhibition found among the recombinant enzymes. These results suggest that the presence of a large and diverse trans-sialidase family might be required to prevent the inhibitory response against this essential enzyme and might thus constitute a novel strategy of T. cruzi to evade the host immune system

    The Impact of Different Types of Assistive Devices on Gait Measures and Safety in Huntington's Disease

    Get PDF
    BACKGROUND: Gait and balance impairments lead to frequent falls and injuries in individuals with Huntington's disease (HD). Assistive devices (ADs) such as canes and walkers are often prescribed to prevent falls, but their efficacy is unknown. We systematically examined the effects of different types of ADs on quantitative gait measures during walking in a straight path and around obstacles. METHODS: Spatial and temporal gait parameters were measured in 21 subjects with HD as they walked across a GAITRite walkway under 7 conditions (i.e., using no AD and 6 commonly prescribed ADs: a cane, a weighted cane, a standard walker, and a 2, 3 or 4 wheeled walker). Subjects also were timed and observed for number of stumbles and falls while walking around two obstacles in a figure-of-eight pattern. RESULTS: Gait measure variability (i.e., coefficient of variation), an indicator of fall risk, was consistently better when using the 4WW compared to other ADs. Subjects also walked the fastest and had the fewest number of stumbles and falls when using the 4WW in the figure-of-eight course. Subjects walked significantly slower using ADs compared to no AD both across the GAITRite and in the figure-of-eight. Measures reflecting gait stability and safety improved with the 4WW but were made worse by some other ADs

    Maternal hypoxia decreases capillary supply and increases metabolic inefficiency leading to divergence in myocardial oxygen supply and demand

    Get PDF
    Maternal hypoxia is associated with a decrease in left ventricular capillary density while cardiac performance is preserved, implying a mismatch between metabolism and diffusive exchange. We hypothesised this requires a switch in substrate metabolism to maximise efficiency of ATP production from limited oxygen availability. Rat pups from pregnant females exposed to hypoxia (FIO2=0.12) at days 10-20 of pregnancy were grown to adulthood and working hearts perfused ex vivo. 14 C-labelled glucose and 3 H-palmitate were provided as substrates and metabolism quantified from recovery of 14CO2 and 3 H2O, respectively. Hearts of male offspring subjected to Maternal Hypoxia showed a 20% decrease in cardiac output (P<0.05), despite recording a 2-fold increase in glucose oxidation (P<0.01) and 2.5-fold increase (P<0.01) in palmitate oxidation. Addition of insulin to Maternal Hypoxic hearts, further increased glucose oxidation (P<0.01) and suppressed palmitate oxidation (P<0.05), suggesting preservation in insulin signalling in the heart. In vitro enzyme activity measurements showed that Maternal Hypoxia increased both total and the active component of cardiac pyruvate dehydrogenase (both P<0.01), although pyruvate dehydrogenase sensitivity to insulin was lost (NS), while citrate synthase activity declined by 30% (P<0.001) and acetyl-CoA carboxylase activity was unchanged by Maternal Hypoxia, indicating realignment of the metabolic machinery to optimise oxygen utilisation. Capillary density was quantified and oxygen diffusion characteristics examined, with calculated capillary domain area increased by 30% (P<0.001). Calculated metabolic efficiency decreased 4-fold (P<0.01) for Maternal Hypoxia hearts. Paradoxically, the decline in citrate synthase activity and increased metabolism suggest that the scope of individual mitochondria had declined, rendering the myocardium potentially more sensitive to metabolic stress. However, decreasing citrate synthase may be essential to preserve local PO2, minimising regions of hypoxia and hence maximising the area of myocardium able to preserve cardiac output following maternal hypoxia

    Age-related hyperkyphosis, independent of spinal osteoporosis, is associated with impaired mobility in older community-dwelling women

    Get PDF
    While many assume hyperkyphosis reflects underlying spinal osteoporosis and vertebral fractures, our results suggest hyperkyphosis is independently associated with decreased mobility. Hyperyphosis is associated with slower Timed Up and Go performance times and may be a useful clinical marker signaling the need for evaluation of vertebral fracture and falling risk. While multiple studies have demonstrated negative effects of hyperkyphosis on physical function, none have disentangled the relationship between hyperkyphosis, impaired function, and underlying spinal osteoporosis. The purpose of this study is to determine whether kyphosis, independent of spinal osteoporosis, is associated with mobility on the Timed Up and Go, and to quantify effects of other factors contributing to impaired mobility. We used data for 3,108 community-dwelling women aged 55-80 years in the Fracture Intervention Trial. All participants had measurements of kyphosis, mobility time on the Timed Up and Go test, height, weight, total hip bone mineral density (BMD), grip strength, and vertebral fractures at baseline visits in 1993. Demographic characteristics included age and smoking status. We calculated mean Timed Up and Go time by quartile of kyphosis. Using multivariate linear regression, we estimated the independent association of kyphosis with mobility time, and quantified effects of other covariates on mobility. Mean mobility time increased from 9.3 s in the lowest to 10.1 s in the highest quartile of kyphosis. In a multivariate-adjusted model, mobility time increased 0.11 s (p = 0.02) for each standard deviation (11.9°) increase in kyphosis. Longer performance times were significantly associated with increasing age, decreasing grip strength, vertebral fractures, body mass index ≥25, and total hip BMD in the osteoporotic range. Kyphosis angle is independently associated with decreased mobility on the Timed Up and Go, which is in turn correlated with increased fall risk. Hyperkyphosis may be a useful clinical marker signaling the need for evaluation of vertebral fracture and falling risk

    Regulation of Hemocytes in Drosophila Requires dappled Cytochrome b5

    Get PDF
    A major category of mutant hematopoietic phenotypes in Drosophila is melanotic tumors or nodules, which consist of abnormal and overproliferated blood cells, similar to granulomas. Our analyses of the melanotic mutant dappled have revealed a novel type of gene involved in blood cell regulation. The dappled gene is an essential gene that encodes cytochrome b5, a conserved hemoprotein that participates in electron transfer in multiple biochemical reactions and pathways. Viable mutations of dappled cause melanotic nodules and hemocyte misregulation during both hematopoietic waves of development. The sexes are similarly affected, but hemocyte number is different in females and males of both mutants and wild type. Additionally, initial tests show that curcumin enhances the dappled melanotic phenotype and establish screening of endogenous and xenobiotic compounds as a route for analysis of cytochrome b5 function. Overall, dappled provides a tractable genetic model for cytochrome b5, which has been difficult to study in higher organisms

    The Bacterium Endosymbiont of Crithidia deanei Undergoes Coordinated Division with the Host Cell Nucleus

    Get PDF
    In trypanosomatids, cell division involves morphological changes and requires coordinated replication and segregation of the nucleus, kinetoplast and flagellum. In endosymbiont-containing trypanosomatids, like Crithidia deanei, this process is more complex, as each daughter cell contains only a single symbiotic bacterium, indicating that the prokaryote must replicate synchronically with the host protozoan. In this study, we used light and electron microscopy combined with three-dimensional reconstruction approaches to observe the endosymbiont shape and division during C. deanei cell cycle. We found that the bacterium replicates before the basal body and kinetoplast segregations and that the nucleus is the last organelle to divide, before cytokinesis. In addition, the endosymbiont is usually found close to the host cell nucleus, presenting different shapes during the protozoan cell cycle. Considering that the endosymbiosis in trypanosomatids is a mutualistic relationship, which resembles organelle acquisition during evolution, these findings establish an excellent model for the understanding of mechanisms related with the establishment of organelles in eukaryotic cells

    Visual Genome-Wide RNAi Screening to Identify Human Host Factors Required for Trypanosoma cruzi Infection

    Get PDF
    The protozoan parasite Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical infection that affects millions of people in the Americas. Current chemotherapy relies on only two drugs that have limited efficacy and considerable side effects. Therefore, the development of new and more effective drugs is of paramount importance. Although some host cellular factors that play a role in T. cruzi infection have been uncovered, the molecular requirements for intracellular parasite growth and persistence are still not well understood. To further study these host-parasite interactions and identify human host factors required for T. cruzi infection, we performed a genome-wide RNAi screen using cellular microarrays of a printed siRNA library that spanned the whole human genome. The screening was reproduced 6 times and a customized algorithm was used to select as hits those genes whose silencing visually impaired parasite infection. The 162 strongest hits were subjected to a secondary screening and subsequently validated in two different cell lines. Among the fourteen hits confirmed, we recognized some cellular membrane proteins that might function as cell receptors for parasite entry and others that may be related to calcium release triggered by parasites during cell invasion. In addition, two of the hits are related to the TGF-beta signaling pathway, whose inhibition is already known to diminish levels of T. cruzi infection. This study represents a significant step toward unveiling the key molecular requirements for host cell invasion and revealing new potential targets for antiparasitic therapy
    corecore