2,376 research outputs found

    Innovation Processes and Technologies for Improvement and Support of Education

    Get PDF
    The education institutions present a complicated economic and social ecosystem with many processes that are constantly under pressure from many stakeholders. Learning organizations are trying to find ways to improve them, but they crash at "unmistakable claims" about the need to build extensive infrastructure for modernization, innovation and greater efficiency. This approach creates requirements for the maintenance and operation of complicated technologies that naturally requires additional resources, both financial and human. In our contribution, we want to present innovative approaches in processes of education based on the agile event management. The agile environment enforces to use the intelligent tools through providers, third parties, allowing automation of service management and replacing many manual activities. Automation provides two-way real-time communication that creates space for users quickly respond to different needs, events and increase productivity. This work is licensed under a&nbsp;Creative Commons Attribution-NonCommercial 4.0 International License.</p

    What's new in ... capnography monitoring for dental conscious sedation: a clinical review

    Get PDF
    Capnography monitoring during conscious sedation is not currently required for dentistry in Britain and Ireland. Other countries have introduced guidelines and standards requiring capnography monitoring for procedural sedation. This review highlights the variability of procedural sedation including the setting, the position on the sedation continuum, and the routine use of supplemental oxygen. Specific research is required for conscious sedation in a dental setting to support standards and guidelines with regard to capnography monitoring

    Chaos-assisted emission from asymmetric resonant cavity microlasers

    Get PDF
    We study emission from quasi-one-dimensional modes of an asymmetric resonant cavity that are associated with a stable periodic ray orbit confined inside the cavity by total internal reflection. It is numerically demonstrated that such modes exhibit directional emission, which is explained by chaos-assisted emission induced by dynamical tunneling. Fabricating semiconductor microlasers with the asymmetric resonant cavity, we experimentally demonstrate the selective excitation of the quasi-one-dimensional modes by employing the device structure to preferentially inject currents to these modes and observe directional emission in good accordance with the theoretical prediction based on chaos-assisted emission.Comment: 9 pages, 10 figures, some figures are in reduced qualit

    COVID-19: a closer look at the pathology in two autopsied cases. Is the pericyte at the center of the pathological process in COVID-19?

    Get PDF
    We performed autopsies on two cases of COVID-19. The microcirculations of all organs were the site of the pathological findings. Thrombotic microangiopathy was found in the brain and also the kidneys. Vasculitis was also a feature of the autopsy findings, together with portal triaditis of the liver. The major pathological findings in both cases were fibrin deposits. Within the lung, the fibrin deposits were observed in the alveolar microcirculation in sub-endothelial locations of capillaries, arterioles, post capillary venules, and the adventitia of larger vessels. These fibrin deposits in the lungs occurred at the sites where pericytes are located in these vessels. The pericyte with its high concentration of ACE-2 receptors and its procoagulant state may represent one of the primary sites of action of SARS-CoV-2. A review of pericytes in health and disease is undertaken. COVID-19 is a disease of the microcirculation

    ALS-associated missense and nonsense TBK1 mutations can both cause loss of kinase function

    Get PDF
    Mutations in TANK binding kinase 1 (TBK1) have been linked to amyotrophic lateral sclerosis. Some TBK1 variants are nonsense and are predicted to cause disease through haploinsufficiency; however, many other mutations are missense with unknown functional effects. We exome sequenced 699 familial amyotrophic lateral sclerosis patients and identified 16 TBK1 novel or extremely rare protein-changing variants. We characterized a subset of these: p.G217R, p.R357X, and p.C471Y. Here, we show that the p.R357X and p.G217R both abolish the ability of TBK1 to phosphorylate 2 of its kinase targets, IRF3 and optineurin, and to undergo phosphorylation. They both inhibit binding to optineurin and the p.G217R, within the TBK1 kinase domain, reduces homodimerization, essential for TBK1 activation and function. Finally, we show that the proportion of TBK1 that is active (phosphorylated) is reduced in 5 lymphoblastoid cell lines derived from patients harboring heterozygous missense or in-frame deletion TBK1 mutations. We conclude that missense mutations in functional domains of TBK1 impair the binding and phosphorylation of its normal targets, implicating a common loss of function mechanism, analogous to truncation mutations

    The Ecm11-Gmc2 complex promotes synaptonemal complex formation through assembly of transverse filaments in budding yeast

    Get PDF
    During meiosis, homologous chromosomes pair at close proximity to form the synaptonemal complex (SC). This association is mediated by transverse filament proteins that hold the axes of homologous chromosomes together along their entire length. Transverse filament proteins are highly aggregative and can form an aberrant aggregate called the polycomplex that is unassociated with chromosomes. Here, we show that the Ecm11-Gmc2 complex is a novel SC component, functioning to facilitate assembly of the yeast transverse filament protein, Zip1. Ecm11 and Gmc2 initially localize to the synapsis initiation sites, then throughout the synapsed regions of paired homologous chromosomes. The absence of either Ecm11 or Gmc2 substantially compromises the chromosomal assembly of Zip1 as well as polycomplex formation, indicating that the complex is required for extensive Zip1 polymerization. We also show that Ecm11 is SUMOylated in a Gmc2-dependent manner. Remarkably, in the unSUMOylatable ecm11 mutant, assembly of chromosomal Zip1 remained compromised while polycomplex formation became frequent. We propose that the Ecm11-Gmc2 complex facilitates the assembly of Zip1 and that SUMOylation of Ecm11 is critical for ensuring chromosomal assembly of Zip1, thus suppressing polycomplex formation

    Mechanical properties enhancement of additive manufactured Ti-6Al-4V by machine hammer peening

    Get PDF
    Wire + Arc Additive Manufacturing (WAAM) is a technology potentially offering reduction of material wastage, costs and shorter lead-times. It is being considered as a technology that could replace conventional manufacturing processes of Ti-6Al-4V, such as machining from wrought or forged materials. However, WAAM Ti-6Al-4V is characterized by coarse β-grains, which can extend through several deposited layers resulting in strong texture and anisotropy. As a solution, inter-pass cold rolling has been proven to promote grain refinement, texture modification and improvement of material strength by plastically deforming the material between each deposited layer. Nevertheless, with the increased interest in the WAAM technology, the complexity and size of the deposited parts has increased, and its application can be hindered by the low speed and complex/costly equipment required to perform rolling at this scale. Therefore, Machine Hammer Peening (MHP) has been studied as an alternative cold work process. MHP can be used robotically, offering greater flexibility and speed, and it can be applied easily to any large-scale geometry. Similarly to rolling, MHP is applied between each deposited layer with the new ECOROLL peening machine and, consequently, it is possible to eliminate texturing and reduce the β-grains size from centimeters long to approximately 1 to 2 mm. This effect is studied for thin and thick walls and no considerable change in grain size is observed, proving the applicability of MHP to large components. The yield strength and ultimate tensile strength increases to 907 MPa and 993 MPa, respectively, while still having excellent ductility. This grain refinement may also improve fatigue life and induce a decrease in crack propagation rate. In this study, it has been shown that MHP is a suitable process for WAAM Ti-6Al-4V applications, can be applied robotically and the grain refinement induced by very small plastic deformations can increase mechanical properties

    Pathogen- and Host-Directed Antileishmanial Effects Mediated by Polyhexanide (PHMB)

    Get PDF
    BACKGROUND:Cutaneous leishmaniasis (CL) is a neglected tropical disease caused by protozoan parasites of the genus Leishmania. CL causes enormous suffering in many countries worldwide. There is no licensed vaccine against CL, and the chemotherapy options show limited efficacy and high toxicity. Localization of the parasites inside host cells is a barrier to most standard chemo- and immune-based interventions. Hence, novel drugs, which are safe, effective and readily accessible to third-world countries and/or drug delivery technologies for effective CL treatments are desperately needed. METHODOLOGY/PRINCIPAL FINDINGS:Here we evaluated the antileishmanial properties and delivery potential of polyhexamethylene biguanide (PHMB; polyhexanide), a widely used antimicrobial and wound antiseptic, in the Leishmania model. PHMB showed an inherent antileishmanial activity at submicromolar concentrations. Our data revealed that PHMB kills Leishmania major (L. major) via a dual mechanism involving disruption of membrane integrity and selective chromosome condensation and damage. PHMB's DNA binding and host cell entry properties were further exploited to improve the delivery and immunomodulatory activities of unmethylated cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODN). PHMB spontaneously bound CpG ODN, forming stable nanopolyplexes that enhanced uptake of CpG ODN, potentiated antimicrobial killing and reduced host cell toxicity of PHMB. CONCLUSIONS:Given its low cost and long history of safe topical use, PHMB holds promise as a drug for CL therapy and delivery vehicle for nucleic acid immunomodulators

    Estimating total body water content in suckling and lactating llamas (Lama glama) by isotope dilution

    Get PDF
    Total body water (TBW) in 17 suckling and six lactating llamas was estimated from isotope dilution at three different post natum and lactation stages using both 18O and deuterium oxide (D2O). In total, 69 TBW measurements were undertaken. While TBW in lactating dams, expressed in kilogram, remained stable during the three measurement periods (91.8 ± 15.0 kg), the body water fraction (TBW expressed in percent of body mass) increased slightly (P = 0.042) from 62.9% to 65.8%. In contrast, TBW (kilogram) in suckling llamas increased significantly (P < 0.001) with age and decreased slightly when expressed as a percentage of body mass (P = 0.016). Relating TBW to body mass across all animals yielded a highly significant regression equation (TBW in kilogram = 2.633 + 0.623 body mass in kilogram, P < 0.001, n = 69) explaining 99.5% of the variation. The water fraction instead decreased in a curve linear fashion with increasing body mass (TBW in percent of body mass = 88.23 body mass in kilogram−0.064, P < 0.001, R2 = 0.460). The present results on TBW can serve as reference values for suckling and lactating llamas, e.g., for the evaluation of fluid losses during disease. Additionally, the established regression equations can be used to predict TBW from body mass, providing that the body masses fall inside the range of masses used to derive the equations

    Performance of the Linear Ion Trap Mass Spectrometer for the Mars Organic Molecule Analyzer (MOMA) Investigation on the 2018 Exomars Rover

    Get PDF
    The 2018 ExoMars rover mission includes the Mars Organic Molecule Analyzer (MOMA) investigation. MOMA will examine the chemical composition of samples acquired from depths of up to two meters below the martian surface, where organics may be protected from degradation derived from cosmic radiation and/or oxidative chemical reactions. When combined with the complement of instruments in the rover's Pasteur Payload, MOMA has the potential to reveal the presence of a wide range of organics preserved in a variety of mineralogical environments, and to begin to understand the structural character and potential origin of those compounds. The MOMA investigation is led by the Max Planck Institute for Solar System Research (MPS) with the mass spectrometer subsystem provided by NASA GSFC. MOMA's linear ion trap mass spectrometer (ITMS) is designed to analyze molecular composition of: (i) gas evolved from pyrolyzed powder samples and separated in a gas chromatograph; and, (ii) ions directly desorbed from crushed solid samples at Mars ambient pressure, as enabled by a pulsed UV laser system, fast-actuating aperture valve and capillary ion inlet. Breadboard ITMS and associated electronics have been advanced to high end-to-end fidelity in preparation for flight hardware delivery to Germany in 2015
    corecore