36,354 research outputs found
Probability of undetected error after decoding for a concatenated coding scheme
A concatenated coding scheme for error control in data communications is analyzed. In this scheme, the inner code is used for both error correction and detection, however the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. Probability of undetected error is derived and bounded. A particular example, proposed for NASA telecommand system is analyzed
Performance analysis of the word synchronization properties of the outer code in a TDRSS decoder
A self-synchronizing coding scheme for NASA's TDRSS satellite system is a concatenation of a (2,1,7) inner convolutional code with a (255,223) Reed-Solomon outer code. Both symbol and word synchronization are achieved without requiring that any additional symbols be transmitted. An important parameter which determines the performance of the word sync procedure is the ratio of the decoding failure probability to the undetected error probability. Ideally, the former should be as small as possible compared to the latter when the error correcting capability of the code is exceeded. A computer simulation of a (255,223) Reed-Solomon code as carried out. Results for decoding failure probability and for undetected error probability are tabulated and compared
Wakes from arrays of buildings
Experiments were carried out in a small wind tunnel in which atmospheric flow around buildings was simulated. Arrays of one, two, three, and four model buildings were tested, and wake profiles of velocity and turbulence were measured. The data indicate the effect of the buildings on the wind environment encountered by aircraft during landing or takeoff operations. It was possible to use the results to locate the boundaries of the air regions affected by the obstacles and to recommend preferred arrangements of buildings to maximize light safety
Permanence analysis of a concatenated coding scheme for error control
A concatenated coding scheme for error control in data communications is analyzed. In this scheme, the inner code is used for both error correction and detection, however, the outer code is used only for error detection. A retransmission is requested if the outer code detects the presence of errors after the inner code decoding. Probability of undetected error is derived and bounded. A particular example, proposed for the planetary program, is analyzed
Fast decoding techniques for extended single-and-double-error-correcting Reed Solomon codes
A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. For example, some 256K-bit dynamic random access memories are organized as 32K x 8 bit-bytes. Byte-oriented codes such as Reed Solomon (RS) codes provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. Some special high speed decoding techniques for extended single and double error correcting RS codes. These techniques are designed to find the error locations and the error values directly from the syndrome without having to form the error locator polynomial and solve for its roots
Investigating properties of the cardiovascular system using innovative analysis algorithms based on ensemble empirical mode decomposition
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited - Copyright @ 2012 Jia-Rong Yeh et al.Cardiovascular system is known to be nonlinear and nonstationary. Traditional linear assessments algorithms of arterial stiffness and systemic resistance of cardiac system accompany the problem of nonstationary or inconvenience in practical applications. In this pilot study, two new assessment methods were developed: the first is ensemble empirical mode decomposition based reflection index (EEMD-RI) while the second is based on the phase shift between ECG and BP on cardiac oscillation. Both methods utilise the EEMD algorithm which is suitable for nonlinear and nonstationary systems. These methods were used to investigate the properties of arterial stiffness and systemic resistance for a pig's cardiovascular system via ECG and blood pressure (BP). This experiment simulated a sequence of continuous changes of blood pressure arising from steady condition to high blood pressure by clamping the artery and an inverse by relaxing the artery. As a hypothesis, the arterial stiffness and systemic resistance should vary with the blood pressure due to clamping and relaxing the artery. The results show statistically significant correlations between BP, EEMD-based RI, and the phase shift between ECG and BP on cardiac oscillation. The two assessments results demonstrate the merits of the EEMD for signal analysis.This work is supported by the National Science Council (NSC) of Taiwan (Grant number NSC 99-2221-E-155-046-MY3), Centre for Dynamical Biomarkers and Translational Medicine, National Central University,
Taiwan which is sponsored by National Science Council (Grant number: NSC 100–2911-I-008-001) and the Chung-Shan Institute of Science & Technology in Taiwan (Grant numbers: CSIST-095-V101 and CSIST-095-V102)
BCH codes for large IC random-access memory systems
In this report some shortened BCH codes for possible applications to large IC random-access memory systems are presented. These codes are given by their parity-check matrices. Encoding and decoding of these codes are discussed
The undetected error probability for shortened hamming codes
Hamming or shortened Hamming codes are widely used for error detection in data communications. For example, the CCITT (International Telegraph and Telephone Consultative Committee) recommendation X.25 for packet-switched data networks adopts a distance-4 cyclic Hamming code with 16 parity-check bits for error detection. The natural length of this code is n = 2(15)-1 = 32,767. In practice the length of a data packet is no more than a few thousand bits which is much shorter than the natural length of the code. Consequently, a shortened version of thecode is used. Often the length of a data packet varies, say from a few hundred bits to a few thousand bits, hence the code must be shortened by various degrees. Shortening affects the performance of the code. The error-detection performance of shortened Hamming codes, particularly the codes obtained from the distance-4 Hamming codes adopted by CCITT recommendation X.25, is investigated. A method for computing the probability of an undetected error is presented
- …
