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) b Introduction

The Bose, Chaudhuri and Hocquenghem (BCH) codes form a large class of ran-
dom-error correcting cyclic codes [1-4]. For any positive integers m (m > 3)
and t (t < Zm'l), there exists a binary t-error-correcting BCH code of length
n = 2" 1 ind no more than mt parity-check bits. BCH codes or shortened BCH
codes are widely used for error control in data storage and communication sys-
tems. In this report, we present some shortened BCH codes for possible appli-
cations to large IC random-access memory systems. These codes are given by
their parity-check matrices. Encoding and decoding of these codes are

discussed.

7. Encoding a. | Decoding of Linear Block Codes

An (n, k) linear block code is specified by either a kxn generator matrix
G or an (n-k)xk parity-check matrix H. In systematic form, the generator and

parity-check matrices have the following forms:

G=[p 1]
D00 bo1 IR | 100 - - -0
P10 b1 0t by aka 6 1 ¢ < = =0
bg-1,0 %%-1,1 0 0 0 Y%ygpk 0 0O L
— — — - s (1)
P I

and
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H= (1P
100 - = = 0 by by beo1.0
o 1 o0 0 by, by, R
= |. - : (2)
P oo b k1 Pkl T T Phelnekel
| I 2 P! ~
n-k

where PT denotes the transpose of P. Encoding can be performed based on either
the generator or the parity-check matrices. However, decoding (syndrome compu-
tation) is normally done based on the parity-check matrix. In some applications,
such as applications to IC random-access memory systems, it is preferred that

both encoding and decoding are based on the parity-check matrix.

Consider a systematic (n, k) code with parity-check matrix given by (2).

Let m = (mo, m, ", mk-l) be the message to be encoded. The corresponding

codeword is

<l
]

‘(vos Vlr Ttt, vV )

n-1 (3)
= (Voo Vs tts Vigape Br My ttts By y)
where the k rightmost bits are identical to the k message bits and tche n-k
leftmost bits are the parity-check bits. The parity-check bits can be ob-
tained from the parity-check matrix H by using the following theorem: A vector
v is a codeword if and only if v HT = 0. From (2) ard (3), the n-k parity-
check bits are given by the following n-k parity-check equations:
Yo = %0 * ™P10 * 7 * ™-1Pk-1,0
M T L VI W L U
(4)

Vh-k-1 - m0b

0,n-k-1 * ™P1,nk-1 * 7 * P 1Pk-1,n-k-1



where the coefficients bij's are the entries of the parity-check matrix H.
Hence, each parity bit is a linear sum of the message bits. An encoder which
accepts k message bits in parallel and forms the n-k parity bits in parailel
is shown in Figure 1.

Let T = (ro, T >y rn-l) be the vector received from a communication

1’
system (or read “rom a memory system). Due to channel or memory noise, T may
differ from the word v transm.tted (or stored) and hence r may contain errors.

The difference between the received word T »nd the transmitted word v is de-

fined as the vector sum

e

= (eoa el.v ALAC en-l)
=T+ V (5)
= (rg * Voo T) * Vpe T Tt V)

where ri + vi is the modulo-2 sum of ri and Vi' We see that
0, ifr. = v,

e. = { i i

1. if r. £ V.
i g

The vector e is called the error vector (or error pattern), the ones in e

indicate errors. From (5), we have
T=v+e. (6)
The receiver does not know either v or e. Upon receiving T, the decoder must
first determine whether r contains errors. If the presence of errors is de-
tected, the decoder takes actions to locate and correct the errors.
Error detection is carried out by ccmputing the syndrcme of the received
word T which is defined as folicws:

s
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Ifs =0, T is a codeword. In this case the decoder assumes that T is error-
free and accepts it. If s # 0, T is not a codeword and the presence of errors
is detected. From (2) and (7), the n-k syndrome bits are given by the follow-

ing n-k syndrome equations:

0° r0 * Thek b00 * Thok+l b10 *

n-1 °k-1,0
S1 =T * T w1 * Tnoker P11 * 777 * Tpe1 Pk-1,1
Sp-k-1" Tn-k-1 * "n-k 20,n-k-1 * Tn-k+1 P1,n-k-1 * °" * Tn-1 Pk-1,n-k-1

From (8), we see that the syndrome s is simply the vector sum of the received

parity bits (ro, T ) and the parity bits recomputed from the re-

1’ ---, rn_k_l

ceived message bits rn-k’ T . Therefore, the syndrome can be

r o
n-k+1’ > "n-1
formed by a circuit similar to the encoding circuit. A syndrome circuit con-

sisting of a replica of encoding circuit is shown in Figure 2.

Example 1: Consider the (7,4) linear code which is specified by the following

parity-check matrix

1 0 01 0 1 1

The three parity-check bits are given by the following parity-check equations:

v0=m0 +m2+m3,

v1=m0+m1*m2 ’

<
[}

m, +m, + m



A parallel encoding circuit is shown in Figure 3. Let T = (ro, Tys Ty, Tgy

Tys Tg» r6) be the vector received or read from a memory system. The bits
bo, b1 and b2 are the received parity bits; the bits T2y Ty r5 and T are the
received message bits. The 3 syndrome bits are given by the following 3 syn-

drome equations:

o Y R T T
U Y R TR R
2 | %2 Yyt Tt T
4 4
Received Parity bits recomputed
parity from the received
bits message bits

A syndrome circuit is shown in Figure 4.
There are Zn possible error patterns. However, every (n, k) linear code
is .upable of correcting Zn'k error patterns which are called the correctable

error patterns. There exists a one-to-one correspondence between a correct-

able error pattern and an(n-k)-bit syndrome s [1-4]. A table can be set up to
show this correspondence. The table consists of Zn"k correctable error pat-
terns and their corresponding syndromes as shown in Figure 5. This table can
be used for decoding. The decoding consists of three steps:
Step 1. Compute the syndrome s of the received word T,
S=TH.
Step 2. From the table, determine the error pattern e which
correspcnds to the syndrome computed in Step 1.
Then e is assumed to be the error pattern caused by

the noise.

Step 3. Decode the received word T into the codeword v = T + e.

.The above decoding scheme is called table-lookup decoding.

-
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The association of the syndrome to an error pattern can be implemented
with either a combinational logic circuit or a read-only memory (ROM). A
general decoder based on the table-liuvokup scheme is shown in Figure 6. The
table-lookup decoder is fast in decodirg speed, however its complexity grows
exponentially with n-k (or with the number of error patterns to be corrected,
2n-k of them). For large n-k, this decoder becomes impractical. However, if
n-k is not too large and if we do not intend to correct all the 2n-k correct-
able error patterns, the table-lookup decoding can be implemented practically.

If a (n, k) linear code with minimum distance d is used for random error
correction, then all the error patterns with t = [g%lj or fewer errors are

correctable, i.e., the code is capable of correcting t or fewer errors in the

received word [1-4]. The number of these error patterns is
Q) * )+ -+ (D),

which is in general much smaller than Zn-k for large n-k. However these are
the error patterns which are most likely to occur. If we only intend to cor-
rect these most probable error patterns, we may set up a decoding table which
only shows the correspondence between these error patterns and their syndromes.
The decoding is taen carried out as follows:

Step 1. Compute the syndrome s of the received word T.

Step 2. Check whether the syndrome s corresponds to an error
SLep <. P
pattern of t or fewer errors.

Step 3. If the syndrome s corresponds to an error pattern e
of t or fewer errors, then_the received word r is
decoded into the codeword v = r + e.

Step 4. If the syndrome s does not correspond to an error
pattern of t or fewer errors, errors are detected.
In this case, either a retransmission or a re-read
from the memory system is requested.
For moderate n and small t (say t = 1n5), the above modified table-lockup de-

coding can be practically implemented and results in a fast decoder which is

P )



desired i1n large IC random-access memory systems.
3. BCH Codes

For any positive integers m(m > 3) and t(t < Zn—l), there exists a binary

BCH code with the following parameters:

Length: n = Zm-l,
Number of parity bits: n - k < mt,
Miniimum distance: d=2t +1.

This code is capable of correcting ali the error patterns of t or fewer errors,
and is called a t-error-correcting BCH code. The code is cyclic and is
uniquely specified by a generator polynomial g(x) of degree n-k [1-4]. Let
v = (vo, Vis s Vn-l) be a binary vector. Let v(x) = Vg & Vg ® sue & vn_lxn'1
be a binary polynomial corresponding to V. Clearly v(x) is a polynomial of
degree n-1 or less. For a cyclic code with generator polynomial g(x), a vec-
tor v is a codeword if and only if its corresponding polynomial v(x) is divis-
ible by g(x), i.e., a multiple of g(x).

Let GF(Zm) be a Galois field of 2" elements. Let a be a primitive element
in GF(Zm). Then the generator polynomial g(x) of a binary primitive t-error-

correcting BCH code of length n 2™-1 is the lowest-degree polynomial with

binary coefficients which has

2 2t
Oy @5 2V 0

. i .
as roots, i.e., g(a”) =0 for i

1, 2, ---, 2t. Generator polynomials of
binary primitive BCH codes of length up to n = 1023 are given by Lin and

Costello [4].

Example 2: For m

code of length n

7 and t = 2, there exists a double-error-ccrrecting BCH

27-1 = 127 and 14 parity bits. Hence it is a (127,113)

code. Its generator polynomial is



- _ 14 9 8 6 5 4 2
(X)) =X +X +X +X +X +X +X +x+1.

o !

Encoding of a BCH code is normally performed in serial manner using a
shift register with feedback connections based on its generator polynomial.

However in some applications, parallel encoding is preferred. For parallel

encoding, we need to determine the parity-check matrix H. Dividing xn.l“1 by
the generator polynomizal Elx) for i =0,1, 2, -+, k-1, we obtain
n-k+i _ — - =
x = a;(x)g(x) + b, (x) ,
where E;(x) ls the remainder with the following form
b. = - n-k-1
DglE) = By # gy ® & =2 by nep-gX
Then the parity-check matrix in systematic form is given below:
1 00 --- 0 b00 b10 ¢ = o bk-l,o
o100 ---0 bo1 b11 S e bk-l,l
H = '
@0 Q== d Byt Yraekd 0 7 Pkelageked

Example 3: For m = 4 and t = 2, there exists a (15,7) double-error-correcting

BCH code with generater polynomial
EIx) = x8 + x7 + x6 + x4 + 1.

Dividing x°** by g(x) for i = 0, 1, -+ , 6, we obtain

|

0(x) =1+ x4 + x6 + x7,

x) =1+ x + x4 + xs + x6,

adl
—
|

2 5 6 7
X) =x+Xx +Xx +X +Xx,

3(x) =1 + x2 + x3 + X

o
N
—~

o

S;(x) x3 + x4 + xs,

n
~
+



bs(x) = x2 + x4 + xS + x6,

Eg(x) X exaxdexn.

The parity-check matrix is given hy
ey
r;-o 0000001101000

010000000110100

001000000011010

In system design, if a code of suitable natural length n or suitable num-
ber k of message digits cannot be found, it may be desirable to shorten a code
to meet the requirements. Let C be an (n, k) linear block code with parity-
check matrix H = [In-k PT],,where PT is an (n-k) matrix. If we delete &
colunns from PT with 0 < 2 < k, we obtain an (n-k)x(n-&) parity-check matrix
Hl = [In-k PRT]. This matrix HE generates an (n-%, k-2) linear code which is

called a shortened code of C. Any shortened code of C has at least the same

error-correcting capability as the original code C [1-4].

4. Shortened BCH Codes for Table Look-Up Decoding

In Table 1, we give a list of 8 shortened BCH codes which have been con-
structed for fast syndrome computation and table look-up decoding. Four of
these codes have d . = 6, while the other four have d . = 8. For all but

min min

the (45, 32) code with d . = 6 and the (86, 64) ccde with d . = 8, the max-
min min



100 -+ 0 by, b0 Py T b111,0
010 ---0by by by b
T 0 01 -+ 0 by, 255, by C b2
[I.. .. P]= . .
15x15
000 1 by14 P14 P24 " 77 Prin14
= a1 e

imum number of 1's in any row of the H matrix is either equal to or slightly
less than a nower of 2. This minimizes the number of logic levels needed to
compute the syndrome, assuming a two-input exclusive-or gate tree-like imple-
mentation. In addition, the number of 1's in each row of the H matrix is
either equal to, or nearly equal to, the average number. This facilitates a
fast parallel computation of the syndrome bits. Although we have not done an
exhaustive search, we feel that the codes listed in Table 1 are nearly optimal
with respect to minimizing the total number of 1's irn the H matrix.

The construction procedure followed was essentially a trial-and-error ap-
proach. A summary description of the construction procedure for the dmin =6
codes now follows.

Consider the (127, 113) dmin = 5 BCH code, which has generator polynomial

3 * X7)(1 + X+ xz + x3 + x7). Let E(X) = (1 + X);(X) =1 + x3 *

10 14

P(xX) = (15 x

x4 + x7 + x8 + X+ X+ xls. Then EIx) generates a (127, 112) dmin = 6 code.

n-k+1 15+1
X

Dividing x = by E(x) fori=0,1, 2, ---, 111, we obtain

15+41  — , -
X = aitx) + bi(x)

where the remainder Ei(x) has the following form:

= 14
by (X)) & By + BogXichccn #by 4% -

Then the parity-check matrix for the (127, 112) dm‘n = 6 code is given by:

T

1 & \



By deleting an appropriate set of 48 columns from the H matrix ahove, we ob-
tained a 15x79 matrix Hl’ which is the parity-check matrix of a (79, 64) dmin =

6 linear code. The matrix H1 is shown in Fig. 7. (In order to conserve space,

the mairix is given in octal notation.) Let w(hi) denote the number of 1's
In the ith row of the matrix Hl' From Fig. 7 we see that:
w(ho) = 30, w(hl) = 30, w(hz) = 30, w(hs) = 31, w(h4) = 31
w(hs) = 30, w(h6) = 31, w(h7) = 30, w(hs) = 30, w(hg) = 30

w(hlo) = 30, w(h = 30, w(h = 30, w(h13) = 30, w(h14) = 30

11’ 12)

and w(hi) < 25 = 32,

By deleting 32 columns from the matrix H,, we obtained a 15x47 matrix H_,

1 2
which is the parity-check matrix of a (47, 32) dmin = 6 linear code. The

matrix H, is shown in Fig. 8. From Fig. 8 we see that:

2
w(ho) = 15, w(hl) = 15, w(hz) = 15, w(hs) = 13, w(h4) = 15
w(hs) = 15, w(h6) = 15, w(h7) = 15, w(hs) = 14, w(Hg) = 15
w(hlo) = 15, w(hll) = 14, w(hlz) = 15, w(hls) = 15, w(h14) = 15
and why) < 2% = 16,
Deleting 16 columns from H2 results in a 15x31 matrix H3, which is the parity-
check matrix of a (31, 16) dmin = 6 linear code, and is shown in Fig. 9. Frem
Fig. 9 we see that:
w(ho) =7, u(hl) =7, w(h2) = 8, w(hs) =70 th4) = 6
w(hs) =7, w(h6) =7, w(h7) =7, w(h8) = 8, w(hg) =7
w(hlo) =7, w(hll) = 8, w(hlz) = 7. w(h13) =7, w(h14) =7
and wih,) < 2° = 8.
Note that cvery column in the matrices Hl’ H2 and H3 contains an odd number
of 1's.
We also constructed a (45, 32) dmin = 6 code from the (63, 51) dmin =5

BCH code, whose generator polynomial is given by EIx) = (1 +x + x6)(1 + X +



xz + x4 + x”). by multiplying E(x) by (x + 1) and then following the sane pro-

cedure described above. The number of 1's in some rows of the parity-check

-

4 ¢
matrix H4 obtained in this case exceeds 2 = 16, however. The parity-check

matrix H4 of the (45, 32) dmin 6 code is shown in Fig. 10. From Fig. 10 we

see that:
w(ho) =17, w(hl) = 18, w(hz) = 16, w(h3) « 17, w(h4) = 17
w(hs) = 18, w(h6) = 17, w(h7) = 16, w(h8) = 18, w(hg) = 17
w(hlo) = 16, w(hll) = 18, w(hlz) = 16 .
The construction procedure for the dmin = 8 codes is similar to that de-

scribed zbove for the dmin = 6 codes. The parity-check matrices are shown in
figures 11-14.

The most efficient dmin = 6 code in tcrms of minimizing the number of
parity-check bits is the (45, 32) code. This code is capable of correcting all
double error patterns and detecting all triple error patterns. A computer
analysis of all weight 4 error patterns has been performed for this code. We
have found that out of (43) = 148,995 weight 4 error patterns, only 28&,485
are undetectable, i.e., they have the same syndrome as a correctable error
pattern. Hence

28,485 _ _ .
1 - Tsl-gﬁ— 1 - .19118 = 80.882%

of the weight 4 crror patterns are detectable for this code. We have also in-
cluded as an Appendix to this repcrt a 38 page computer printout of the de-
coding table for this code. Listed are the syndromes and their corresponding

coset leaders for the
(4§) . (42) = 45 + 990 = 1035

correctable error patterns. The remaining syndromes for the detectable error

patterns are not listed.
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Fig. 5 A Table-Lookup Decoding Table
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Received vector_
buffer register r

" - v

Syndrome calculation circuit

Error-pattern-detecting circuit
(a combinational logic circuit)

L

Corrected output

Fig. 6 General decoder for a linear block code
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15x15

i Parity-check i f
Fig. 8 arity-check matrix of a (47, 32) dmin

-~ - —— -

0 4
4 6
6 3
3 5
1 2
4 5
6 6
7 3
3 1
5 4
2 2
5 1
2 4
1 2
0 1
6 code

P



Fig. 9

2 2 4 3 0 4
5 1 2 1 4 0
6 4 1 0 6 4
1 0 4 6 3 0
0 6 2 1 1 0
4 3 1 1 4 0
0 1 4 5 6 0
I 0 2 2 0 7 4
15x15
0 3 1 3 3 0
0 1 4 4 5 4
6 2 2 1 2 0
3 1 5 0 5 0
3 4 2 4 2 0
1 6 1 2 1 0
4 5 0 6 0 4
e — ———

Parity-check matrix of a (31,16) dmin = 6 code



Fig. 10

Igeys 7 6 0 3 2 7 4 s
307 2 1 4 3 4 2
7 3 o 4 4 3 7 1
4 1 1 6 1 1 6 4
5 4 1 3 3 4 6 2
5 2 s 1 7 4 2 1
5 1 7 0 4 4 2 0

| S

Parity-check matrix of a (45,32) dmin = 6 code




Fig. 11

Parity-check matrix of a (35,16) dmin

2 6 4 1 1
"19x19 4 2 2 4 5
3 0 1 6 3
4 s 0 2 1
6 0 4 0 0
7 2 2 3 o0
35 1 2 4
1 4 4 s 2
1 5 2 4 4

= 8 code
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19x19

Fig. 12

Parity-check matrix of a (51,32) dmin = 8 code
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15 Introduction

The Bose, Chaudhuri and Hocauenghem (BCH) codes form a large class of ran-
dom-error correcting cyclic codes [1-4]. For any positive integers m (m > 3)
and t (t < Zm'l), there exists a binary t-error-correcting BCH code of length
n = 2™ 1 and no more than mt parity-check bits. BCH codes or shortened BCH
codes are widely used for error control in data storage and communication sys-
tems. In this report, we present some shortened BCH codes for possible appli-
cations to large IC random-access memory systems. These codes are given by

their parity-check matrices. Encoding and decoding of these codes are

discussed.

2. Encoding and Decoding of Linear Block Codes

An (n, k) linear block code is specified by either a kxn generator matrix
G or an (n-k)xk parity-check matrix H. In systematic form, the generator and

parity-check matrices have the following forms:

and

G=[P1]
\F b erremy
®oo o =~ " Ppka POO - - -0
®10 11 Lakp 2 A .
be-1,0  P%-1,1 oLk T OO 1
‘n o — J (1)
I
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