```
(NASA-CR-:73666) WAKES FRCM AERAYSCF NOS-14430
BUILIINGS Final Report (Arizcra State
Univ.) 127 F HC AO7/MF AOI CSCL 20L
                                    G3/34 0nclas
```

NASA CONTRACTOR
REPORT
Ni."A CR-j: : 66
WAKES FROM ARRAYS OF BUILDINGS
By Earl Logan, Jr. and Shu-Ho Lin
College of Engineering and Applied Sciences

```Arizona State University
```

Tempe, Arizona 85287

Final Report, Contract NAS8-34318

November 1982
Prepared for
NASA-George C. Marshall Space Flight CenterMarshall Space Flight Center, Alabama 35812

TECHNICAL REPORT STANDARD TITLE PAGE

ORIGINAL PACE IS
OF POOR QUALITY

FORENORD

Abstract

This study was initiated to deteraine wake profiles behind buildings and natural obstacles using acaled sodel in wind tunnel. The wind tunnel approach is preferable because of econony of time and money, simplicity and convenience. This is the fifth report of a program sponsored by the Fluid Dynamics Branch, Atmospheric Sciences Division of Space Science Laboratory at the George C. Mershall Space Flight Contor, National Aoronatics and Space Administration, Huntsville, Alabama.

This research was conducted under the technical direction of Mr. Dennis W. Camp and Mrs. Margaret Alexander of the Space Science Laboratory at Marshall Space Flight Center. Tho support for this research was provided by Mr. A. Richard Tobiason of the Office of Aeroneutics and Space Technology, NASA Headquarters, Washington, D.C.

actinomedarents' ${ }^{\circ}$

The authors were greatiy assisted in che laboratory by Mr. Mike Canady, who produced the photographs of the surface flows; by Mr. Robert Field, who took the measurements with the 3 -dimensional probe; and by Mr. Daniel Johnson, who aseisted in taking the hot-filn data.
innil of ownlins
Pare
charIIR 1. INIRODHIIION 1
CHAMIIR \therefore I XPIRIAINIAI WIORA 11
IMAPIIR : SHRFACI IIOW AROIND MODEIS \therefore
IHAPIIR \&. VIIMClIY PROHIISS \therefore
CHAPIIR! IHRSUINC! MISTRIRUTION $?$
CHAPIIR O. COMPARISON OF WARES 101
RHHRNCIS 11.4
AFIN NII 116
ligure Title 「いse

1. Recirculation Zones from Smoke Tosts of Holdredse and Reod (1956) 3
2. Pressure Coofficients on the Surfaces of Building
[Holdredge and Reod (1956)] 5
3. Control Volume for Drag Calculation 7
4. Measurem •nts of Wioghardt (1953) Showing the Effect
of L / H and δ / B on C_{D} 9
5. Single-building Model Arrangement with Variable L/H 12
6. Two-building Model Arrangement with Variable L./ 12
7. Two-building Model Arrangement with Variable S/H 12
8. Four-building Model Arrangement with Variable S/H 13
9. Threo-building Model Arrangement with Variable S/H 14
10. Schematic of Vind Tunnel 15
11. Directional Probe Connections 18
12. Surface Flow around Single Buildings 21
13. Surface Flow around Buildings in Tanden 22
14. Surface Flow around 4-building Arrays 23
15. Surface Flow around 3-building Arrays 24
16. Streamline Patterns fron Smoke Studies of Holdredse and Reed (1956) 25
17. Velocity Profile Opstream of Models 30
18. Tarbuleace Intensity Upatrean of Models 31
19. Airoraft's Path deriag Take off 34
Figure Title Page
20. Change in Lift Coofficient with Downdraft in Single-building Wake at $x / K=10$ 35
21. Velocity Profiles for Pattern No. 1
at $x / H=2,4$ and 6 37
22. Velocity Profiles for Pattern No. 1 at $x / H=10,16$ and 28 38
23. Velocity Profiles for Pattern No. 2 at $x / H=2,4$ and 6 39
24. Velocity Profiles for Pattern No. 2 at $x / H=10,16$ and 28 40
25. Velocity Profiles for Pattern No. 3 at $x / H=2,4$ and 6 41
26. Velocity Profiles for Pattern No. 3 at $x / H=10,16$ and 28 42
27. Velocity Profiles for Pattern No. 4 at $x / B=2,4$ and 6 43
28. Velocity Profiles for Pattern No. 4 at $x / E=10,16$ and 28 44
29. Velocity Profiles for Pattern No. 5
at $x / B=2,4$ and 6 45
30. Velocity Profiles for Pattern No. 5 at $x / B=10,16$ and 28 46
31. Velocity Profiles for Pattern No. 6 at $x / B=2,4$ and 6 47
Figure Title Page
32. Velocity Profiles for Pattern No. 6
at $x / H=10,16$ and 28 48
33. Velocity Profiles for Pattern No. 7
at $x / H=2,4$ and 6 49
34. Velocity Profiles for Pattern No. 7
at $x / B=10,16$ and 28 50
35. Velocity Profiles for Pattern No. 8
at $x / B=2,4$ and 6 51
36. Velocity Profiles for Pattern No. 8
at $x / H=10,16$ and 28 52
37. Velocity Profiles for Pattern No. 9
at $x / B=2,4$ and 6 53
38. Velocity Profiles for Pattern No. 9
at $I / B=10,16$ and 28 54
39. Volocity Profiles for Pattern No. 10
at $x / B=2,4$ and 6 55
40. Volocity Profiles for Pattern No. 10
at $x / B=10,16$ and 28 56
41. Velocity Profiles for Pattern No. 11
at $x / H=2,4$ and 6 57
42. Velooity Profiles for Pattorn No. 11
at $x / E=10,16$ and 28 58
43. Volocity Profiles for Pattern No. 12
at $x /$ 日 $=2,4$ and 6 59

I LST Of Ill IS'IRATIONS (Continued)

1isure litle lage
44. Velocity Profiles for Pattern No 12
at $x / H=10,10$ and 28 60
45. Velocity Profiles for Pattorn No. 13
at $x / \mathrm{H}=2,4$ and 6 61
46. Velocity Profiles for Pattern No. 13
at $x / H=10,16$ and 28 62
47. Boundaries of the Disturbed Region bohind Single
Buildings 64
48. Slope of the Velocity Profile in the Disturbed
Region behind Single Buildings 65
49. Disturbed Region on Line Between Tru Rows of Buildings 69
50. Slope of the Velocity Profile in the Disturbed
Region Between Two Rows of Buildings 70
51. Turbulence Profiles for Pattern No. 1
at $x / B=2,4$ and 6 72
52. Turbulence Profiles for Pattern No. 1 at $x / H=10,16$ and 28 73
53. Turbulence Profiles for Pattern No. 2
at $x / B=2,4$ and 6 74
S4. Turbulence Profales for Pattera No. 2
at $x / B=10,16$ and 28 75
55. Terbaleace Profiles for Pattern No. 3 at $x / B=2,4$ and 6 76
Figure ritle Page
56. Turbulence Profiles for Pattorn No. 3 at $x / B=10,16$ and 28 77
57. Turbuience Profiles for Pattern No. 4
at $x / H=2,4$ and 6 78
58. Turbalence Profiles for Pattern No. 4at $x / H=10,16$ and 2879
59. Turbalence Profiles for Pattern No. 5
at $x / B=2,4$ and 6 80
60. Turbulence Profiles for Pattern No. 5
at $x / H=10,16$ and 28 81
61. Turbulence Profiles for Pattern No. 6 at $x / H=2,4$ and 6 82
62. Turbulence Profiles for Pattayin No. 6
at $x / B=10$, i6 and 28 83
63. Turbalence Profiles for Pattern No. 7
at $x / B=2,4$ and 6 84
64. Turbelence Profiles for Pattern No. 7
at $x / B=10,16$ and 28 85
65. Terbulence Profiles for Pattern No. 8
at $x / H=2,4$ and 6 86
66. Turbalence Profiles for Pattern No. 8
at $z / H=10,16$ and 28 87
67. Turbuleace Profiles for Pattcra No. 9
at $x / B=2,4$ and 6 88;

LIST OF IISUSTRATTONS (Concluded)

Figure

Title
Page
68. Turbulence Profiles for Pattern No. 9
at $x / B=10,16$ and 28 89
69. Turbnlence Profiles for Pattern No. 10
at $\mathrm{I} / \mathrm{H}=2$, 4 and 6 . 90
70. Turbalence Profiles for Pattern No. 10
at $x / H=10,16$ and 28 91
71. Turbalence Profiles for Pattern No. 11
at $y / H=2,4$ and 6 92
72. Turbulence Profiles for Pattern No. 11
at $x / H=10,16$ and 28 93
73. Turbulence Profiles for Patters No. 12
at $x / B=2,4$ and 6 . 94
74. Turbulence Profiles for Pattera No. 12
at $x / B=10,16$ and 28 95
75. Turbelence Profiles for Pattern No. 13
at $x / \mathrm{H}=2,4$ and 6 . 96
76. Turbuience Profiles for Pattern No. 13
at $x / E=10,16$ and 28 97
77. Secondary Cells behind Rovs of Surface-mounted
Obstacles . 99
Table Title Page
I. Building Arrangements 16
II. Comparison of Wakes 102
A-1 Pressure-probe Mesurements of \mathbf{U} for Pattern No. 1 107
A-2 Pressure-probe Measurements of -V for Pattern No. 1 108
A-3 Pressure-probe Messurements of V for Pattern No. 1 109
A-4 Pressure-probe Measurements of \mathbb{O} for Pattern No. 6 110
A-5 Pressure-probe Messurements of -V for Pattern No. 6 111
A-6 Pressure-probe Measurements of 7 for Pattern No. 6 112
A-7 Vake Characteristics 113

NOMENCIATURE

Symbol	Definition
A	Slope of the velocity profile
$\mathrm{A}_{1}, \ldots, \mathrm{As}_{5}$	Control-surface areas
B	Constant
$C_{\text {d }}$	Drag coefficient
C_{f}	Friction coefficient
C_{L}	Lift coefficient
C_{p}	Pressure coofficient
D	Drag
H	Height of building
L	Length of buildings
1	Mixing length
S	Spacing between buildings
U	Longitudinal mean velocity
$\mathbf{U}_{\mathbf{R}}$	Reference velocity
\mathbf{U}_{1}	Free stream men velocity
U*	Friction velocity
EV	Componeat of Reynolds shear stress
n^{\prime}	DUS velue of longitudinal turbulence fluctuation
0^{\prime}	Maximua value of a^{\prime}
0^{\prime} 。	M ${ }^{\text {value }}$ of opstrean turbelence flucteation
V	Vertical mean volocity
V	Lateral mean velooity or vidth of beildiag
I	Loagitudimal coordimate
y	Distance from lloor of vind tramel
2	Lateral coordiante

gREEK ALPHABETT

Symbol	Definition
δ	Boundary layer thichness
δ_{i}, s_{s}	Upper and lower limits of high-velocity-gradient region
δ_{m}	Distance y at which $u^{\prime}=\mathrm{u}^{\prime} \mathrm{m}$
v	cinematic viscosity
A	Momentum thichincs
${ }^{\top}$	Surface shedi stress

CHAPTER 1

INTRODUCTION

1. Applications of Wind Tunnel Research

Cermat (1975) has traced the beginnings of experimentai studies of wind effects to the eighteenth century. In the last fifty gears wind tunnel development has made possible many studies involving simulated wind passing around buildings and other structures. Such studas, couplud with the development of the principles of dimensional analysis, have made possible the prediction of forces and moments created by atmospheric wind.

In recent years wind tunnels have been used to investigate the flow field around buildings to aid in th prediction of the spread of pollutants from facturies and automobiles and to predict the wind enviroment of pedestrians, land vehicles and aerospace vehicles in the immediate vicinity of buildings. Besides buildings, natural topography can affect the flow structure of the atmosphere, as can towers, fences and vegetation. The present work is concerned with the later wind effect, viz., the effect of buildings or other obstacles on the wind enviroment of aerospace vehicles in flight.
2. Background of the Present Investigation.

Prediction of takooff and landing trajoctories of arospace vehicles requires an advance knowledge of wind conditions in the field of operation. It is known that baildings in the vicinity of landing strips can affoct the velocity profiles of the wind fiela. Vakes from
bluff bodies, as a potential hazard to air trafic, has been discussed by Ficht1, Cump and Frost (1977).

NASA Marshall Space Flight Conter initialed work to relate buidding geometry to wake flow. Results of fiold investigation was reported by Frost, ot al (1977), and a wind tuncl investigation was described by Woo. Poterka and Cormak (1977). Tho data of the above ficld and windtunnel test havo beon compared by logan and (amp (1978). The offect of an upstream obstacle on the wake of acond (downstream) obstacle was investigated by logan and Chang (1080). The interaction of wakes from latorally spaces buildings was reported by logan and Barber (1980) and by logan and lin (1982).

The work citod above involved the offect of the spacing of vory long (two-dimensional) buildings. In the presont work buildings of finite length aro considered. Huilding models are arranged in paterns of one, two. threo or four buildings, and measurements of volocity and turbulence in the wake region are obtained. The results show the offoct of buiding length and spacing on the wake character. The study providos data which are useful for the prodiction of the flight path of nerospace vohicles which are landing or taking off in the vicinity of single-or multipie-building arrays. The information is useful for the planing of now structures in the vicinity of airports.
3. Single Buildings

Figure 1 was extracted from report by Holdredge and Reod (1956). Using modols of block-type buildings in a low-sped wind tungel, the basic features of flow betind the buildings were atudied through flow visualization. In the reoiroulation sone flow over the building is

ORIGINAL PAR 13
OF POOR QUKLITY

accompanied by a reversed flow at ground level. Flow around the ends of the building is partly returned via an inward flow towards the back side of the building. These two secondary motions accompany the main flow around the single building and characterize the recirculation region.

The length of the recirculation zone for a two-dimensional model (1arge L/H) of square cross-section should be slightly less than nine, according to Fig. 1. This is in excellent agreement with the results of Logan and Barber (1980) obtained from skin friction values.

Figure 2 was also presented by Holdredge and Reed (1956) and illustrates surface pressure variation. Pressure taps were drilled through the walls $u \hat{f}$ nexiglas models in a grid pattern. The results were then presented as contours of surface pressure coefficients on the five exposed faces of the block-type building. On the front face a region of high pressure $\left(C_{p}>.9\right)$ is indicated. The pressures are below atmospheric on the tor, side and back faces, as these faces are in contact with regions of separated flow. The cavities formed by the separated flow contain some fluid moving counter to the main flow direction. The pressure contours indicate probable flow direction along surfaces, e.g., on the baci surface flow is expected to occur outward from the region interior to the $C_{p}=-.4$ contour, i.e., towards the end and the top surfaces, where $C_{p}<-.4$. The flow patterns are as indicated in Fig. 1 , which are obtained by flow visuslization.

The present investigation extends the work of Holdredge and Reed (1956). to include wake profiles of velocity and turbulence. The present work also involves surface flow patterns on the gronnd in the cavity behind the model.

$\begin{array}{ll}9 & 14 \\ 3\end{array}$

ORIGINAL Praver
OF POOR QUAL:I

$1: 1: 2$

Fiq. '. Pressure Coofficients on the Surfaces of a Bulding [Holdredge and Reed (1956)]

```
                                    ORIGINAL FGGE IS
4. Multiple.Buliding Array: OF POOR QUALITY
Holdredse and Reod (iost) also invesifaied ine flum uf als around atrays of buildings. inoluding mot of the patterna uated for tho prosent Work. Thetr omphasis was difforent. in that only surfave pressure measurement: are reported. Their work shows the effect of building spadng on contorilne arface prossures. The present work oxtends their Invostigation o include veloolty and turbulonoe profilos downstrean of building arrays and surface flow patterns obiained from flow viaualiation.
```

```
    Ponwarden afid Wiso (10%S) obiatned surface flow pafterns, am woll
```

 Ponwarden afid Wiso (10%S) obiatned surface flow pafterns, am woll
 as voloolty and surface prossure measuroment: for multiplo building
as voloolty and surface prossure measuroment: for multiplo building
arrays. The thrust of this work. as well es the earlier work of Wise.
arrays. The thrust of this work. as well es the earlier work of Wise.
Sexton and l,114ywhite (1905), was to define the wind environment between
Sexton and l,114ywhite (1905), was to define the wind environment between
buildings. The present wori ls geometrionily similar but oxtends the
buildings. The present wori ls geometrionily similar but oxtends the
work to lnolude wake messuremeais downstremm of the arraya,

```
work to lnolude wake messuremeais downstremm of the arraya,
```


5. Theoretionl Considerations

```
Sone lmportant theoretical dean about flow around aingle bulidiage were edvanced by Hunt (1971). De presontsexpresions vhich relate the Corce or moment on bullding to the velooity field. Referfing to fif. 3 the drac oooffictent on blook-type buidding is given by
```

$$
\begin{align*}
& C_{D}=\frac{1}{R L U_{R}^{2}} \iint_{A_{1}} u^{4} d y d z-\iint_{A_{2}} U^{4} d y d z \\
& -\iint_{A_{3}} U v d x d z-2 \iint_{A_{4}} U V d x d y-\iint_{A_{3}} r_{0} d x d z
\end{align*}
$$

ORIGINAL PE: OF POOR QUALIIY

Fig. 3. Control Voluae for Drag Calculation

Abstract

whore A_{1} refers to area afed., A_{2} to area bghcb, A_{3} to area afga, A_{4} to area abcda (or ara efghe) and A_{5} to area dehcd. These areas are the planc control surfaces of a box-like control volume surrounding the building, which is situated at the origin. The reforence velocity U_{R}, used to non-dimensionalize the expression, is arbitrary and could be the frecstream velocity U_{1}, the velocity O_{H} at $\mathrm{y}=\mathrm{H}$ in the upstream profile or an average velocity based on that part of the profile between $y=0$ and $y=H$. The surface shear stress τ_{0} and the velocity components U, V and Wary over the areas of integration.

Althongh the drag force D can be increased by increasing building length L, height H or the wind velocity U_{R}, the drag coefficient is modified when certain dimensionless ratios are altered. Joubert, Pery and Stevens (1971) indicate that this dependency might be given as

$$
\begin{equation*}
C_{D}=\mathbf{f}\left(\mathrm{H} / \delta, \mathrm{HU}^{*} /, \mathrm{L} / \mathrm{H}\right) \tag{1.2}
\end{equation*}
$$

where δ denotes boundery layer thickness, U upstrean friction velocity and kinomatic viscosity. Modification of the quantities on the right hand side of (1.2) changes the streamine pattern, and the surface pressure contours are likewise altered. Referring to Fig. 2, it is seen that a shorter building would yield a lower C_{D}, since end effects would exert areater infience. The difference in C_{p} on the front of the building and on the rear is clearly less near the onds than at the center. Thas a lower aspect ratio L/H implies a lower drag coefficient C_{D}. This effect is corrcborated by the extensive experimental results of Wieghardt (1953). Fignre 4 shows that increasing L/E increases C_{D} for models of square cross section. The reference velocity $\mathrm{U}_{\mathbb{R}}$ used in Fig. 4 is the integrated average in the range $0<\boldsymbol{j}$ <.

ORIGIMAL FRGE: IS OF POOR QUALITY

Fig. 4. Moasurements of Wieghardt (1953) Showing the Effect of L/B and 8/B on CD

```
    Wieghardt's results show that CD increases with H/\delta and with URH/
The ratio of B/W, madel height to stresmwiso width, also affects CD.
Fence-like models with largo values of H/W have the highest drag coeffi-
cients. Similarly the cross-sectional shape of the model effects C CD
Profiles having a sharp edge at the roof line have the highest drag
coofficients.
    Referrin
hand side are affected by a change in CD, except the first torm, which
depends on the upstrean profile. The second tera is affected most
substantially and will docrease with an increase with CD. This term
represents the major part of the momentum flow from the control volume.
Moasurement of centerline volocity profiles and ovaluation of furdy
provides a measure of this term, and changes in this integral are pro-
portional to changes in CD. Wake velocity profiles are thus related to
the geometical features of the flow through (1.1) and (1.2). The
monentum flux at the conterline can be obtained from velocity
mesurements of the present work.
```

EXPERIMENTAL WORK

1. Models

Block-type buildings were modelled using sections of square aluminum bars which were cut to several lengths. The height H of the models was $8.38 \mathrm{~mm}+0.01 \mathrm{~mm}$, and the streamwise width was likewise 8.38 mm . The length L of the models was equal to $3 \mathrm{H}, 6 \mathrm{H}$ or 9 H .

For multiple-building arrays, the space S is also varied. Figures 5-9 depict the arrangements studied and indicate the notation mentioned. A. 11 lengths are even multiples of the model height H.

The models were mounted in arrays on the floor of the wind tunnel and securely glued in place. The arrangements used are indicated in Table I. The infinite spacing $(S=\infty)$ refers to the single building as shown in Fig. 5. The lateral spacing, where buildings are separated laterally, is always 6 H .
2. Wind Tunnel

Figure 10 is achematic depiction of the wind tunnel resed for the model tests. Room air was drawn into the tunael through filter, and a boundary layer was developed on the floor between the inlet and the test section. The models were mounted 4.88m from the inlet, which left 2.44n of tunnel length downstrean of the models.

The floor of the tunnel is 56 cm wide and is made of plywood covered Fith a layer of Formica. The sides and roof are coastructed of Plexislas. The roof was afjusted to give a zero presure gradient flow.
original pace is OF POOR QUALITY

Fig. S.Single-building Model Arrangement with Variable L/h

Fig. 6.Two-building Model Arrangement with Variabie L/B

Fig. 7.Tvo-buildigg Model Arrangemeat vith Variable S/B

ORIGINAL F:
OF POUR Q: \quad :...

Fig. 10. Schemetic of Vind Tuncel

```
and its hoight above tho floor varlod from 25.4 cm at tho intot to 20.0
cm at tho , itt. Prossuro taps in tho sidos of the tumolol were used to
dotermino the regutrod adjustmont of tho roof.
    Tho roof was slottod to allow the inmertion of probos, but tho
slots wero covorod during tests to assure minimum leakago. Probes were
supported and moved by a traversing carriago, whith allowod probe move
mont in throt ifrections.
```

'taHI.F I

Hullding Arrangements

Patiorn No:	Shown it $\mathrm{Flg}, \mathrm{No}:-$	$\begin{gathered} \text { longth } \\ 1 \end{gathered}$	$\begin{gathered} \text { Spacing } \\ s . . \end{gathered}$
1	5	611	\cdots
2	0	6 H	2 I
3	5	3H	\cdots
4	θ	3 H	2 H
5	7	OH	311
0	7	6H	O1:
7	7	OH	911
8	5	9 H	∞
9	8	6 H	3 H
10	8	6H	6 H
11	8	6 H	9 H
12	9	6 H	3 H
13	9	OH	6 H

A tripping rod and action of andpaper on the floor noar the inlet of the tunnol was used to promote rapld development of mondery layer. Tho thickness of tha boundary layer formod on tho floor of the tuncel at the position of tho models ($4.8 m$) wataproximately 10 . The froostream velocity V_{1} at this point wasmantainodat $6.7 \pm .1 \mathrm{~m} / \mathrm{s}$. The temperature of the atr in the room. which was wrawn into the tunnei. was controlled to $25+1$ dogreos Colstus. Under theso conditions tho obstacle Reynolds number, dofinod as $\|_{i} K /$, was mprosimately 3750 .
3. Flow Visualization
The adaptation of the oflefim technique to visulize surface flow paths by logan and lin (1982) was appliod to all of tho model arrays in Table 1. oxcopt for patiorn nos. 2 and 4. A mixture of isopropyl alcohol and charcoal powder (0.5678 charcoal/55 mi alcohol) was noured over tho floor of the tunnel immediatoly around the models. Photographs were takon just after the first 15 seconds of tunnel operation. All photographs wore made with a iripod-mounted 35 mm camera supported above the roof of tho test section. The camera seting used was f/5.6 and $1 / 125$ sec. The film used was Tri-X ASA 400 , and prints were made on high contrast FS photographic paper.

4. Measurements

Preliminary measurements of the three components U, V and V of man volocity in the wates of pattern numbers 1 and 6 (Table I) were obtained With a three-dimensional Pitot tube. This probe was the model DC-125 directional probe manufactured by United Sensor and Control Corporation. The probe connections were made as shown in Fis. 11. The pressure

Fig. 11. Directional Probe Connections
transducer was a Gould-Statham Model PM5 (0.3psid), and the bridge amplifier was a Fogg model 50.

The pressure probe permitted the making of off-centerline measurements but was not useful for detailed measurements very near to the floor. Thus profiles of mean velocity U and root-mean-square fluctuation u^{\prime} werc cestied uut at centerline stations for all building arrays listed in Table I using a single-, normal-rod TSI $1290-20$ hotfilm probe of 0.0508 mm diameter. Detailedmean velociry \quad d turbulence intensity profiles were obtained with this probe. The TSI 1050 series instrument used with this probe comprises four parts: a 1050 Constant Temperature Anemometer, a $1051-6$ Monitor and Power Supply, a 1072 Signal Linearizer and a 1076 True RMS Voltmeter. A DISA 55D35 RMS unit was also used to measure the RMS values.

Since a typical sensor (TSI 1210) was used in an air flow of low velocity range ($0-30 \mathrm{fps})$, the four polynomial coefficients involved in the adjustment of the linearizer could be obtained from the manufac-turer-supplied Table of Coefficients. Because the freestream vilocity U_{1} was used as a non-dimensionalizing quantity, the non-dimensionalized values of mean and fluctuating velocities were really just relative values to that of U_{1}, so the only calibration needed was to secure a consistent freestream velocity value. The Linearizer was fet to give a velocity reading of 10 volts when the probe was moved to a reference position in the freestream. The readings of mean and fluctuating velocities which were recorded were already non-dimensionalized.

CHAPTER 3

SURFACE FLOW AROUND MODELS

Figures 12-15 show photographs of streak patterns formed with the alcohol-carbon powder mixture on the floor of the wind tunnel in the vicinity of the models. Most of the arrays listed in Table I were studied in this way. The photographs give useful information about the extent of the disturbance to the flow field arond the models. Noting that the squares of the superimposed grid are 2 H in size, it is observed tha: the flow field is influenced to a distance of about 6H away from any side of the block-type model.

The asymmetry of the upstream flow patterns is evident in Figs. 12-14. Although the models were set at approximately 90 degrees to the side walls of the tunnel, it appears that some small deviation from 90 degrees must exist between the velocity vectors of the upstream particles and the models. This may be explained by a small lateral component of mean velocity, which produces an angle between the velocity and the models of slightly less than 90 degrees. Such a lateral component is expected, when turbulent boundary layers are developing in non-circular ducts. For example, Pletcher and McManus (1965) reported secondary currents as high as one percent of the freestream velocity. Logan and Lin (1982) reported secondary currents in the wind tunnel used in the present investigation. Apparently the slightest deviation from a 90-degree direction of the velocity vector shifts the stagnation region noticeably. The smoke-filament studies of Holdredge and Reed (1956), shown in Fig. 16, also indicate that the stagnation point shifts to a

ORIGAMC Ban:
OF PCOR Quizint

Fig. 12. Surface Flow around Single Buildings
uncu-wi- \therefore :un. 's
OF POOR QUALITY

$r=3$

$=6 i$

$S=9 H$

Fig. 13. Surface Flow around Buildings in Tandem

Fig. 14. Surface Flow around 4-building Arrays
ORIGTPIAL F"` ORIGTPIAL F"`
uF POOR QuALIM
uF POOR QuALIM

$\because=O H$

Fig. 15. Surface Flow around 3-building Arrays

Fig. 16. Stroandine Patterns from Smoke Studies of Holdredge and Reed (1956)
position near the leading corner of a model in a skewed position with respect to the approaching stream.

The surface flow natern around the single model, shown in fig. 12 , shows symmetrical flow fields in the recirculation zones behind each of the three buildings tested. Fluid from the end regions passes into the region behind the buildings and apprcaches the back sides near the centerline, as shown in Fig. 1. The line which divides buildingdirected fluid from downstream-directed fluid is curved and reaches a maximum distance from the back side of the model on the centerline. This reattachment distance is approximately 311 , $5 H$ and $7 I l$ fur the models of lengths $3 H, 6 H$ and $9 H$, respestively. These discances agrec quite well with those given by Holdredge and Reed (1956), as taken from the graph in Fig. 1, except for the longest building. The graph of Fig, 1 for $W / H=1$ is reasonable representaion of the maximum dinension of the recirculation region, although it could be medified sightly by the present results.

The contrasting dark and light areas in Fig. 12 are assumed to indicate regions of low and high surface shear stress, respectively. There are, of course, inconsistoncies, e.g., shadows, such as the dark annular region cased by the lamp used for lishting the test section. The separation regions at the sides and back of the models are darker, and the stresses there are low. Along the centerline downstrean of the recirculation region, there is a dark, wedse-sheped resion. In this section of the wake, the surface stresses and low-level velocities are low. Fluid noves fron the two adjecent sides into this region, and the central region increases in velocity and shear stress at the erpense of the regions on each side of it. Thus the vake of lor-monestug fluid
spreads in wedge-shaped manner. The half-angles of the wedge-shaped areas are approximately 7,14 and 18 degrees for models of length $3 \mathrm{H} \quad 6 \mathrm{H}$ and 9 H , respectively. The virtual origins of wedges appear to be located approximately at distances of $8 \mathrm{H}, 4 \mathrm{H}$ and 2 H downstream of the back side of the models of lengths $3 \mathrm{H}, 6 \mathrm{H}$ and 9 H , respectively.

Figure 13 shows the effect on the flow field of tandem arrangement of two identical buildirgs. The shortest sping S is $\mathbf{3 H}$. For this case the flow field docs not appear to develop in the rear of the first building. Instead the flow develope around both buildings as a unit, and the recirculation region formed behind the second building is likz that for wide building, i.e., W/H>2. In Fig. 1 the $\boldsymbol{V} / \boldsymbol{H}>2$ curve indicates a reattachment length of $\mathbf{3 . 6} \mathrm{H}$. This is in good agrecment with the observed value for $S=3 H$ in Fig. 13 . Figure 13 shows a recirculation zone behind both buildings when the separation is 6 and $^{\text {a }}$ 9H. However, the reattachment length behind the second building is ofly about 4 f for the larges separation, whereas it is closer to 5 for the single-building case. The wedge-shaped region is also present with the tandea arrangement, and the half-angle of the wedge is roughly the same as behind the single building. However, the virtual origin of the wedge is somewhat closer to the back side of the model.

The wedge locations for the arrays of Fig. 14 are slighty different from one another, althoug the tander arrays are identical. Otherwise the flow patterns are individually very similar to those in Fig. 13. If the wedge patterns define the regirn of retarded fluid, the approximate location of the intersection of the neighboring wedges should correspond with the point of maximen roterdation and should be observable from cesterliae velocity profiles. For a 15 -degree
half-angle of the wedge and with the 6 H lateral separation shown in Fig.
14, calculations results indicate make intersectionat 24 .

The zecirculation zone for a building located behind the gap
between two long buildings is shown in Fig. 15. The reatechment
lengths for these cases are close to those of the single buiding in Fig. 12, i.e., they comply roughly with the graph of Fig. i. Becase the flow behind the downstrean building is bounded at either side by retarded fluid from behind the long, upstream buildings, there is less interaction, and apparently no wedge-shaped region is formed. Tho gap flow upstream is disturbed conside=ably by the model behind the gap. The flow through the gap is probably reduced in the central region by the obstacle, with resulting increase in flow above li.is region, but the flow between the ends of the bailding may be intensified, at last for the spacing of $3 \mathrm{H}, \mathrm{as}$ indicated by the light areas at the ends of the central building.

CHAPTER 4

VEI,OClIY PROFILES

1. Upstream Profiles
Profiles of mean velocity and turbulence intensity taken with no models on the floor of the tunnel are shown in Figs. 17 and 18, respectively. These profiles wer faken wit he hot-film probe described in Chapter 2. The honeycomb flow stacightener was removed for this test and for all hot-film measurements reparted in the chapter. The profiles are compazed with those previously reported by Logan and Barber (1980), using the same tunnel geometry, but with the tunnel located in a different room. A difference in shape of the velocity profile is noticeable. The free stream turbulence level in the new location is significantly higher. Apparently turbulence generated outside the tunnel is more significant in the new tunnel location, and the root-mean-square of the longitudinal fluctuation u^{\prime} mounts to 4.9 percent of the free stream velocity U_{1}.
The effect of an incrense in the high free stream turbulence intensity on the mean velocity profile is to lower the shap: factor H (defined as the ratio of displacement thickness to momentum thickness). The charge of velocity profile, corresponding to change of k, shon in Fig. 17 agress with that predicted by McDonali. ' Krestovsky (1974).
2. Wake Piofiles
Wake Profiles of mean velocity were measured downstream of the patterns described in Table I. Measuremen.s wes. mado at stations which

URICINAL PAQE IS

OF POOR QUALITY

Fif. 17. Volooity Profile Upatroam of Modela

ORIGINAL REME OF POOR Quatiry

Fig. 18. Terbuleace Inteasity Upatrean of Models
were located at distances of $2 \mathrm{H}, 4 \mathrm{H}, 6 \mathrm{H}, 10 \mathrm{H}, 16 \mathrm{H}$ and 28 H from the rear (downstream) side of the building model. The earliest measurements were made in the wakes of pattern nos. 1 and 6 (Table I) using a five-holepressure probe. These measurements are presented in the Appendix in Tables A-1 to A-6.

The pressure-probe measurements are useful in that the three velocity components U, V and W are given. They serve as means of constructing a qualitative flow picture in the wake behind the single building ($L=6 H$) and the two-building, tandem array (both buildings have $\mathrm{i}=6 \mathrm{~F}$). These data should be considered only qualitative, as good accuracy is preciuded by the relative size of the probe (3.175mm diameter) as compared to the height of the model ($\mathrm{H}=8.38 \mathrm{~mm}$) and to the thickness of regions of high velocity gradient generated behind the models.

Measurements of wake profiles of mean velocity (longitudinal component U) and turbulent fluctuations (rms of longitudinal component) were made behind all 13 patterns of Table I using the hot-film probe. Since the sensor for this probe (TSI 1210) is a cylinder 0.0508 mm in diameter and is held parallel to the floor and normal to the main flow direction (x-direction), detailed wake measurements in the region of high velocity gradient were feasible. Profiles measured with the hot-fila probe were obtained only at stations on the centerline, however. At the centerline the measurements of mean velocity include a vertical component V as well as the horizontal component U. Since the angle of the resultant volocity vector is not determinable with the single-sensor, normal, hot-film probe, the offect of the vertical component is ignored in this report. The worst error due to this effect is expected to be 1 to 1.5
percent and would occur close to the model, say in the region bounded by $0<y / H<3$ and $o<x / H \leqslant 10$.

Preliminary Velocity Measurements: Pressure Probe Results

The data of Table A-1 to A-6 were taken with the five-hole pressure probe. The results are given to aid in building a qualitative picture of streamines at various levels in the wake region. In the wake of a building arranged as in Fig. 1 a low speed region of reversed flow is expected to occur just behind the building. The flow around the sides and roof of the building is accelerated initially but later mixes with and accelerates the retarded fluid directly downstream of the building. Near the surface (floor of the tunnel) the velocity profiles show increases in $\mathbb{J} / \mathrm{U}_{1}$, as x / H increases. The increase in U at low levels in the central wake region means that mass must be added to the region from regions above or to the sides of this region. Tables A-2 and A-3 show that $V<0$ and $W>0$ at all offenterline stations in the wake of the single building. Flow occurs towards the centerline and towards the ground (floor of the tunnel) in the wake region. The same general features of the wake flow are observed in the data of Tables A-5 and A-6, which were obtained behind two buildings in a tandem array.

The relative magnitudes of the vertical velocities, given in Tables A-2 and A-5, are of interest in the determination of aircraft response during flight through building wakes. A low-level flight through a wake might be as depicted in Fig. 19. The aircraft would have gained a height above the ground of roughly $y / B=2$ when it was 10 building heights $(x / G=10)$ to the rear of the building. The dowadrafts V from Table A-2 can be used to estimate the deviation of the angle of attack,

ORIGINAL PAGE 1 OF POOR QUJALITY

Fig. 19. Aircraft's Path during Takeoff

OF POOR QUALITY

Fis. 20. Cheage in Lift Coofficteat with Downdraft in Siagle-buildiag
 This deviation of C_{L}, denoted by ΔC_{L}, is plotted in Fig. 20 using the data obtained on the centerline behind a single building at $x / B=10$. To obtain the values of ΔC_{L} used in Fig. 20 , it is assumed that the deviation of angle of atack Δa from the angle of attack a of the wing of the aircraft flying in horizontal wind is given by arc tangent $[V /(U+n U)]$, where $n U$ is the flight speed of the aircraft. If the flight speed is very low, or the wind speed U is very high, then it is plasible that $n<4$. The slope of the lift curve of the aircraft is estimated as 0.1 per degree. Assuming an aircraft lift coefficient of 2 to 3, it is seen from the graphs of Fig. 20 that fight through a wake of a building could entail momentary lift change of from 2 to 25 percent, owing solely to downdrafts in the wake.

The magnitudes of V in Table A-5 for the tandem arrangement are comparable to those in Table $A-2$ but show somewhat higher values of ΔC_{L} for the location considered in Fig. 20. For example, ΔC_{L} is 42 percent higher at $y / H=3$ and $x / H=10$ as compared with the value of ΔC_{L} behind the single building at the same location.

Detailed Volocity Messurements: Hot-file Results

Mean Volocity profiles obtained at centerline stations in the wakes produced by the 13 patterns (Table I) are shown in Figs. 21-46. The detailed profiles show two bends, which constitute upper and lower boundarys of the disturbed region. The height of the upper bend is denoted by 8_{i} and that of the lower bead by 8_{s}. The variation of 81 and ©s with distance 1 downstrean of the building is significant, in that it delineates the region of the wake which is potentially dagerous to

Fig. 21. Velocity Profiles for Pattura No. 1

Fig. 22. Velocity Profiles for Pattorn No. 1

Fis. 23. Volocity Profiles for Pattern No. 2

Fig. 24. Volooity Profiles for Patiera No. 2

Fig. 25. Velocity Profiles for Patera No. 3

ORIGINAL FACK IS OF ROOR :UUALTM

Fig. 26. Volocity Profiles for Patteri No. 3

Fig. 27. Velocity Profiles for Pattern No. 4

ORIGINAL PAGE IS
OF POOR QU WITY

Fis. 28. Volocity Profiles for Pattern No. 4

ORIGINAL PRGE IS OF POOR QUALITY

Fig. 29. Volooity Profilez for Pattera No. 5

Fig. 30. Veldoity Profilea for Patiera No. S

Fig. 31. Volocity Profilez for Pattern No. 6

Fig. 32. Velocity Profiles for Pattorn No. 6

ORIGINAL PAGE IS
OF POOR QUALTTY

Fig. 33. Velocity Profiles for Pattern No. 7

Pig. 34. Velooity Profiles for Pattera No. 7

Fig. 35. Volocity Profiles for Pattera No. 8

Fis. 36. Volocity Profiles for Pattera No. 8

ORIGINAL HMO: GU
OF POOR QUALITY

Pig. 37. Velocity Profiles for Pattorn No. 9

Fig. 38. Velocity Profiles for Pattera No. 9
original pace is OF POOR QUALITY

Pig. 39. Velocity Profiles for Petera No. 10

Fis. 40. Velooity Profiles for Patterm Mo. 10

URIGIIVAL PAGE is OF POOR QUALTT.

Fig. . 11 . Velocity Profiles for Pattern No. 11

ORIGINAL PAGE is OF POOR QUALITY.

Fis. 42. Volooity Profiles for Pattora No. 11

ORIGINAL PAGE IS OF POOR QUALITY

Pig. 43. Volooity Profiles for Pattera No. 12

Fig. 44. Volooity Profiles for Pattern No. 12

EIGNAI Fr, OF POOR QUALITY

Fig. 45. Volocity Profiles for Pattera No. 13

Fig. 46. Volocity Profiles for Pattorn No. 13
aircraft. In particalar the region bounded by the lower height δ_{8} and the upper height δ_{i} is one of high velocity variation, i.e.. the velocity gradient $d U / d y$ is higher than found in the undisturbed profile at the same elevations. The semilogarithaic plots of Figs. 21-46 show that the velocity profile can be approximated by a straight line between the two bends, i.e..

$$
\begin{equation*}
\frac{\mathrm{U}}{\mathrm{U}_{1}}=\mathrm{A} \ln \frac{\mathrm{y}}{\mathrm{~B}}+\mathrm{B} \tag{4.1}
\end{equation*}
$$

is the equation of the straight portion. Thus

$$
\begin{equation*}
\frac{d u}{d y}=\frac{A U_{1}}{y} \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d D / U_{1}}{d y / H}=\frac{A H}{y} \tag{4.3}
\end{equation*}
$$

The parameter A is aseful measure of the magnitude of the velooity gradient. Bor a given straight-line segment, A and B are constants and can be deternined from the graphs.

Values of $\mathbf{8}_{\mathrm{i}}, 8_{\text {a }}$ and A were obtained from the graphs and ere presented graphically in Figs. 47 and 48 for single buildings and for one tanden arrangenent. The date of Logan and Barber (1980) for bailding of infiaite leasth are inoiuded also. The solid curves show the position of 8_{1} and 8_{3}, and the area between these curves represents the disturbed region, 1.0. , the region of higher-tham-average do/dy or A.

ORIGINAL PAGE IS OF POOR QUALITY

Fig. 47. Boundsries of the Disturbed Region behind Single Buildings

Values of the constent A.for single buildings are plotted in Fig. 48. A higher value of A means a higher value of dU/dy at givan elevation y. Figure 48 shows that increasing tho aspect ratio L / H also increases A. Since the relation betweon A and skin-friction coefficient $1 s$ given by

$$
\begin{equation*}
A=2.5 \sqrt{\frac{C_{f}}{2}} \tag{4.4}
\end{equation*}
$$

it is evident that C_{f} increases with L / H also.
The upstream profile corresponds to $C_{f} \quad 0.0035$ or $A=0.1046$. The disturbed valnes of for single buildings lie in the region bounded by the dashed curves of Fig. 48. The upper curve represents roughly the variation of A with x / H when L / B is iafinite, and the lower curve represents values of A for $L / H=3$. Extrapolation of the data shows that the wake of building of small aspect ratio decays much faster. The value of x / B at which the curve reaches $A=0.1046$ is the length of the disturbed region or wake. Figure 48 is useful in making estiates of wake length, wich is the region of potentially hazardons air travel. The height of the region of hezardons flight is deternined from Fig. 47, after the leagth of the region is known from Fig. 48.

The length of the zone of hazardous flight corld also be estinated by writing equations for the solid lines of Fig. 47 and solving them simultaneousiy. The equation for the upper line is givez by

$$
\begin{equation*}
\frac{8_{i}}{B}=1.75\left(\frac{X}{B}\right)^{.3288} \tag{4.5}
\end{equation*}
$$

and that for the lover boandary is

$$
\begin{equation*}
\frac{\delta_{s}}{H}=0.192\left(\frac{x}{-}\right)^{.63} \tag{4.6}
\end{equation*}
$$

Since δ_{i} iH achioves value of 10 at $x / H=200$, and this is the edge of the wind tunnel boundary iayer, the extinction of the disturbed region occurs when $\delta_{s}!H=10$, viz.. about $x / H=500$. This is somewhat longer than the region obtained by extrapolation of the limited data of Fig. 48. However, the slow decline in the value of A for the building of infinite aspect ratio makes the latter estimate more plansible.

It should be noted that C_{f} in (4.4) is related to the C_{D} in (1.2), rather than to the local wall skin friction. The lower part of the profiles, below $y=5 s$, have slopes related to the local C_{f}. This disturbed part of the profile and the correspoading slope A are affected primarily by the force on the model, i.e., by C_{D}. As seen previonsly in Fig. 4, C_{D} decreases as L / H decreaser. Thus it is oxpected that A would decrease with L/E as is depicted in Pig. 48.

The height δ_{i} of the disturbed region is incressed by the tendem arrangenent (Patterns 5-7), as is depicted in Fig. 47. The differencos in δ_{i} disappear further downstrean, viz.. by $x / E=30$. Values of slope A are lower initially, but differences disappear by $x / B=16$.

The tanden arrangoment of Patterns 5-7 are repeeted in Patterns 9-11. which provide two tanden rows spaced lateraliy by a distance of 6R. Here it is assmed that vake profiles on the building conterifies will be as given for Patteras 5-7 in Figs. 29-34. The vake profiles erested alons the conterliae of the gap betweon building rows are presented for Petterns 9-11 in Rigs. 37-42. Although mot an identical
geometry, a comparison with the wide-gap results of Logan and Barber (1980) can be made. The disturbance region is shown in Fig. 49 and may be considered to be included between the dashed curves. Figure 50 shows the variation of A with x / H. Its value $i s$ around 0.2 over the entire range, which is almost twice the undisturbed value. The gap data do not show a rapid decay, but it is expected that the decay, indicated by the dashed curve is more appropriate for rows of low aspect-ratio buildings.

Merging of the two dark wedges observed on the photcgraphs of Fig. 14 occured ${ }^{2}$ - jout $x / H=24$ for $L / B-6$. This position should correspond with the observed maximum value of A, i.e., to the distance required for the retarding effect bohind the obstacle to reach the centerline of the space between the obstacies. The points of Fig. 50 for $L / H=6$ show that A maximizes between $x / H=16$ and $x / H=28$. If the effect spreads laterally a distance of $3 H$ at $x / H=24$, then the lateral rate of spread is roughly the same as the vertical rate, as may be inferred from the upper (solid) curve of Fig. 47 .

A single building downstream of the gap formed by two laterally spaced ouildings was studied and data are presented in Figs. 43-46. The wake profiles for the single building behind the gap (Patterns 12 and 13) were compared with profiles for the single building (Pattern 1). Little offect is noted in values of $\mathbf{8}_{\mathrm{i}}$ and 8 s . However, as significant difference in A occors at small values of $x /$. The seall acceleration of fluid which occurs in the gep regiun results in higher velocity gradients downstrean of the building. For Pattern 13, the value of A is increased by 35 percent at $\mathrm{I} / \mathrm{B}=4$ over the value for the building in undisturbed viad. Further comparisons can he nede esiag the americal data presented in Table A-7 in the Appendiz.

CRIGINAL FREL is
OF PUOR QUALITY

ORIGINAL PALLi is in OF POOR QUALITY

TURBULENCE DISTRIBUTION

Abstract

Hot-film-probe measurements of u^{\prime}, the rms value of the longitudinal velocity fluctuation, are presented in Figs. 51-76. The flucturtion u^{\prime} is non-dimensionalized with U^{*}, the friction velocity of the undisturbed flow.

In these profiles an increase of u^{\prime} is observed immediately behind the building. The madimum value of u^{\prime} occurs at elevations of 1-1.5H above the groun' at $x / H=2$. The location of the maximum of u^{\prime} is denoted by δ_{m}, and the maximum flactuation is denoted by u ' ${ }^{n}$. These locations and magnitudes are presented systematically in Table A-7 of the Appendix.

The extent , the region of increased turbulence may be observed by comparirg the wal. profiles with the profile for undisturbed flow. This is shown in Fig. 51 to illystrate the clear definition of the region. The upper limit, or merge point, correspond, closely with the position of the upper bend in the velocity profile, i.e., it occurs at or near y $=\delta_{i}$. The lucation of the point of maximum turbulence occurs nearer to 8s, i.o.. in the fower part of the zone of high velucity gradient. From (4) ic is clear that $d U / d y$ is largest ncar the botton of the highgradient zone, i.e.. near $y=\mathbf{\delta g}_{\mathrm{g}}$, and turbulence production is proportional to dU/dy. The turbulence production also uipends on the Reynolds shear stress $u v$, and this has been shown to maximize in a manner analogous to the turbulence fluction. [See Logan and Chang (1980)]. Prandtl's mixing longth theory indicetes dependonce of

ORIGINAL PAGE: 3
OF POOR QUALITY

Fig. 51. Tirbulence Profiles for Pattera No. 1

Fig. 52. Turbulence Profiles for Patern No. 1

Pis. 53. Turbulence Profiles for pattera No.:

GRIGINAL PAGE: : OF POOR QUALITY

Fif. S4. Tarbelunce Profiles for Patera No. 2

Fig. 56. Turbulence Profiles for Pattern No. 3

Fig. 57. Tarbalence Profiles for Pattern No. 4

Fig. 58. Turbuience Profiles fer Pattera No. 4

Fis. 59. Tarbulence Profiles for Pattera No. 5

Fig. 60. Turbalence Profiles for Pettere No. 5

Fig. 62. Tarbulence Profiles for Patera No. 6

Fig. 63. Turbuleace Profiles for Pactern No ?

Fig. 64. Turbulence Profiles for Pattern No. 7

$$
c-2
$$

ORIGINAL HACE B OF POOR QUALITY

Fig. 65. Turbulence Profiles for Pattern No. 8

ORIGINAL FAGE B

 OF POOR QUALITY

Fig. 66. Turbulence Profiles far Putlern No. 8

Fig. 67. Tarbulence Profiles for Pattern No. 9

Pis. 68. Turbulence Profiles for Pattora No. 9

ORIGINAL PAGE IS

 OF POOR QUALITY

Fis. 69. Tarbulence Profiles for Pattern No. 10
original page is OF POOR QUALITY

Pig. 70. Turbulence Profiles for Pattern No. 10

ORIGINAL PAGE IS OF POOR QUALITY

Fig. 71. Turbulence Profiles for Pettern No. 11

Fig. 72. Terbuleace Profiles for Pattora No. 11

ORIGINAL PAGE IS OF POOR QUALITY

Fig. 73. Turbeleace Profiles for Pattera No. 12

ORIGINAL PAOE IE OF POOK QUALITK

Fig. 74. Terbeleace Profizes for Patera No. 12

Fig. 75. Turbeleace Profiles fos Pattora No. 13

Pig. 76. Tarbalenct Profiles for Pattara No. 13

Reynolds shear stress on the square of $1(d U / d y)$, where 1 ie the mixing length.

Turbulence in the region below $y=\delta_{s}$ is still elevated above the undisturbed value. The region is supplied with urbulence energy via gradient diffusion from the higher production zone. Turbulence energy is lost from this region by dissipation in smaller eddier and by eradient diffusion in the lateral direction, i.e.. in the z-direction.

Although the discussion given about fits the wakes directly behind obstacles, it does not suit the development of profiles measured in line with the centerline of the space between two rows of buildings. Profiles for Patterns 9-11 are shown in Figs. 67-72, and chey are representative of the second kind of wake. The flow in these regions derives its changed form by adjusting to the highly sheared flow at eithor side. Momentum is lost to adjacent slower-moving fluid via Reynolds shear stresses associated with lateral variation of mean velocity. Turbulent energy is gained in this region via diffusion from more energetic shear zones and through secondary currents which convect turbulence into this zone near the iall (seo Fig. 77). The latter concept of secondary cella was advanced by Rotta (1972) and was based on the shape of isotachs downstrean of surface-monnted spheres. The offect of the building on the boundary layer, viz., increased velooity gradient and turbulen.e, propagates laterally at roughly the same rate as vertically. The effect has been propagated fully to che conterline between the rows of buildings by 16 < $\mathrm{z} / \mathrm{A}<28$, as seen in Pis. 68 for Pattern 10 . Study of surface flow forterns and velocity profiles indicates that the offeot
 lence and slope A decline. Becsuse the offect is propagated from the
ORIGINAL PAGE IS OF POOR QUALITY

Fig. 77. Secondary Cells behind Rows of Surface-mounted Obstacles
first element of the two in tandem, forming of the profiles begins
oarlier in Fig. 71 for Pattorn 11, than for Pattern 9 and 10.
One inference that can be made from theso data is that the lateral
spread rate is roughly the same as the vertical rato of spread. This is
in agreoment with predictions made in an earlier section from velocity
profile changes and from surface flow visualization. This approximate
method may bo used to prodict tho lateral oxtont of the wake and to make
estimates of the slope A and maximum values of u ' on the sides of the
model. The method should be checked in future research.

CHAPTER 6

COMPARISON OF WAEES

Some important data for each pattern used in the present study are compared in Table II. The first three columis of the table refer to the last station, i.e.. $x / H=28$. For this station the first column contains the height of the shear layer in building heights. The second column lists the height of the layer of maximum turbulence level at x / H $=28$. The third column presents the increase in turbulence level above the original or upstream value $u^{\prime} \rho$ at the elevation $\boldsymbol{\delta}_{\mathrm{m}} / \mathbf{H}$ where \mathbf{u}^{\prime} has its maximum value. This turbulence excess $n^{\prime} m$ - no is non-dimensionalized with the upstream or undisturbed friction velocity 0^{*}. The fourth colum lists values of non-dimensional velocity gradient in the shear layer formed in the wake between $y=8_{i}$ and $y=8 \mathrm{~g}$. The gradient shown is the maximun at the arbitrary height $y=3 B$. In this chapter values in Table II will be used to compare the wakes produced by the 13 patterns of buildings. From the standpoint of flight safety, patterns having the smallest values of quantities in Table II are preferred.

Patterns 1, 3 and 8 are the single, block-type structure with its length normal to the flow. From Table II it is seen that increasing L/B increases the thickness δ_{i} of the shear layer. The magaitude and height of the high turbulence sone also are found to increase vith aspot ratio. The magnitude of the velocity gradient increases when L / B is increased from 3 to 6 but does not change significantly when L/B ohanges from 6 to 9. A analler aspect ratio is cleariy desirablo.

TABLE II

COMPARISON OF WAKES

${ }^{3}$ ATTERN No.	$x / H=28$			max. at $y / H=3$ $d\left(U / u^{\prime}\right) / d(y / H)$
	δ_{i} / \mathbf{H}	$\delta_{\mathrm{m}} / \mathrm{H}$	(u'm-u'o)/U*	
1	5.6	2.7	. 7	.18
2	4.8	2.6	. 6	. 17
3	4.2	2.4	. 4	. 10
4	3.5	2.3	. 5	. 07
5	4.8	2.4	. 7	.14
6	5.8	3.3	. 8	. 14
7	5.5	3.3	. 8	.14
8	5.9	3.3	1.3	. 17
9	4.0	1.9	. 7	.06
10	3.6	1.9	.6	. 07
11	3.8	1.9	. 7	. 08
12	6.0	3.3	1.2	. 19
13	5.7	3.3	1.1	. 20
Tandem arrangement of two buildings of equal length was omployed in				
Fatterns 2, 4, 5, 6 and 7. Pattern 4 can be compared with Pattern 3,				
since $L=3 H$ in both cases. A small improvement is observed for the				
closely-spaced, low-aspect-ratio buildings. Patterns 5, 6 and 7 can be				
compared with pattern 1, as all buildings have $L / H=6$. The closely				
spaced, tandem arrangement, pattern 5 , shows an improvement in all				
categories, while wider spacing does not improve the wake in an overall				
sunse. Thus the tandem arrangement with $S / H=3$ is preferred over the				
sinfle building.				
No sigh. ficant differences are observed in the wake of the gap				
betwee the rows of the 4-building arrays, patterns 9, 10 and 11. Based				
on data from the tandem patterns, it appears that the pattern 9 is to be				
preferred. One point that should be studied in the future is the magni-				
tude of secondary air currents set mp by the rows of buildings. In				
future investigationg three or more buildings conld be inciuded in esch				
rou, and	- vel	comp	8. U, V and	sured.

```
The arrangement of a single building behind the gap formed by two laterally spaced buildings appears to be very bad design. The wake of the single building in patterns 12 and 13 can be compared with that of the isolatea building in pattern 1 . The gap appears to affect the wake adversely for both longitudinal spacings. Further study could prove that tandem arrangement with short longitudinal spacing would be superior in this case as well, i.e., in the case of a 3 - or 4-building array of buildings of unequal lengths.
An extension of the present research, which seems worthwhile, would be an attempt to optimize spacing in the tandem arrangement for various aspect ratios. The data of Table II show that such an optimum may exist. The effect two or more buildings of different heights in a tandem array should also be addressed.
```


REFERENCES

Cermak, J.E., ''Applications of Fluid Mechanics to Wind Engineering - a Freeman Scholar Lecture'', J. Fluids Eng., Vol. 97, 1975, pp. 9-38.

Fichtl, G.H., Camp, D.W. and Frost W., ''Sources of Low-level Wind Shear Around Airports'', J. Aircraft, Vol. 14, pp. 5-14, 1977.

Frost, W., Ficht1, G., Connell, J.R. and Hutto, M.L., ' Mean Horizontal Wind Profiles Measured in the Atmospheric Boundary Layer about a Simulated Block Building'', Boundary Layers Meteorology, Vol. 11, pp. 135-145, 1977.

Holdredge, E.S. and Reed, B. H.. ''Wind Tunnel Studies of Pressure and Velocity Distribution' ', Texas Enginecring Experiment Station Report, Contract DA-18-064-404-CM-189, College Station, Teras, 1956.

Hunt, J.C.R., ''The Effect of Single Buildings and Structures'', Phil. Trans. Roy. Soc. Lond. A 269, pp. 457-467, 1971.

Joubert, P.N., Perry, A.E. and Stevens. L.K., ''Drag of a Bluff Body Immersed in a Rough-wall Boundary Layer'', Proceedings of the Third International Conference on Wind Effects on Buildings and Structures, Saikon, Tokyo, 1971, pp. 179-188.

Logan, E. and Barber, D.S., 'Effect of Lateral Spacing on Wake Characteristics of Buildings' ', NASA CR-3337, Marshall Space Flight Center, 1980.

Logan, E. and Camp, D.W., ' Preliminary Comparison of Model and Prototype Vakes' ${ }^{\prime}$, AIAA Paper 78-254, 1978.

Logan, E. and Chang, J., 'Wake Characteristics of Buildings in Disturbed Boundary Layers'', NASA CR-3284, Marshall Space Flight Center, 1980.

Logan, E. and Lin, S.H., 'Wind Tannel Measurements of Three-dimensional Wakes of Buildings' ', NASA CR-3565. Marshall Space Flight Center, 1982.

McDonald, H. and Ereskovsky, J.P.. ''Effect of Free Stream Turbulence on the Turbulent Boundary Layer' ' Int, J. Reat Mass Transfer, Vol. 17. 1974. pp. 705-716.

Ponwarden, A.D. and Wise, A.F.E., 'Wind Enviroment Around Buildings', Building Research Establishment Roport, 1975.

Pletcher, R.B, and McManes, H.N., 'Secondary Fiow in the Entrance Section of Straight Rectanguler Duct''. in S. Ostrach, Ed. . Develop= mepts in Mechenics. Vol. 2. 1965. pp. 269-291.

Rotta, J.C., Turbulente Stromungen, Teubner, Stuttgart, 1972.
Wieghardt, K., ''Erhohung des Turbulenten Reibungswiderstandes durch Oberflachenstorungen' ', Forschung fur Schiffbau und Schiffmaschinen, No. 2, pp. 65-81.
A.F.E. Wise, D.E. Sexton and M.S.T. Lillywhite, ' Studies of Air Flow round Buildings' ', Architects Journel, May 1965, pp. 1185-1190.

Woo, H.G.C., Peterka, J.A. and Cermak, J.E., ''Wind-tunnel Measurements in the Wakes of Structures'', NASA CR-2806, Marshall Space Flight Center, 1977.

APPENDIX

TABLE A-1
Pressure-probe Measurements of $U(m / s)$ for Pattern No. 1 (Table I)

2/H	1/H						
	y/H	2	4	6	10	16	28
0	1	3.505	3.656	3.895	4.368	4.793	5.211
	2	5.617	5.567	5.108	4.839	5.026	5.388
	3	5.872	5.780	5.782	5.620	5.488	5.589
	4	5.993	5.967	6.000	5.937	5.877	5.783
	5	5.998	6.089	6.031	6.001	6.061	6.092
	6	6.091	6.207	6.151	6.122	6.122	6.182
	8	6.299	6.353	6.357	6.270	6.270	6.299
	10	6.439	6.414	6.414	6.386	6.472	6.499
-2.5	1	4.642	4.946	5.170	5.255	5.226	5.155
	2	5.729	5.376	5.584	5.577	5.513	5.610
	3	5.884	6.067	5.819	5.811	5.747	5.748
	4	6.008	6.036	6.005	5.970	5.909	5.970
	5	6.128	6.127	6.067	6.093	6.002	6.122
	6	6.247	6.247	6.186	6.182	6.124	6.213
	8	6.363	6.391	6.332	6.389	6.361	6.360
	10	6.478	6.534	6.504	6.504	6.504	6.531
-4.5	1	5.466	5.388	5.284	5.184	5.255	5.293
	2	5.817	5.757	5.693	5.692	5.694	5.728
	3	6.008	6.007	5.885	5.917	5.916	5.949
	4	6.069	6.068	6.040	6.100	6.040	5.980
	5	6.190	6.159	6.161	6.161	6.190	6.161
	6	6.307	6.307	6.220	6.249	6.278	6.249
	8	6.423	6.479	6.366	6.423	6.479	6.423
	10	6.536	6.563	6.535	6.508	6.507	6.564
-6.5	1	5.629	5.594	5.526	5.527	5.525	5.973
	2	5.978	5.944	5.944	5.946	5.943	5.974
	3	6.219	6.189	6.189	6.160	6.126	6.214
	4	6.277	6.307	6.278	6.278	6.332	6.364
	5	6.365	6.422	6.335	6.393	6.421	6.450
	6	6.479	6.479	6.479	6.479	6.450	6.506
	8	6.592	6.592	6.592	6.564	6.590	6.618
	10	6.675	6.647	6.647	6.675	6.673	6.701

TABLE A-2
Pressure-probe Measurementse of $-V\left(\frac{m}{2}\right)$ for Pattern No. 1 (Table I)

2/H	1/H						
	y/H	2	4	6	10	16	28
0	1	1.172	1.007	. 967	. 766	. 580	. 374
	2	. 248	. 287	. 377	. 509	. 493	. 341
	3	. 215	. 262	. 286	. 327	. 348	. 312
	4	. 237	. 242	. 257	. 303	. 273	. 285
	5	. 238	. 227	. 253	. 238	. 267	. 227
	6	. 226	. 231	. 237	. 223	. 223	. 216
	8 10	. 184	. 195	. 195	. 187	. 205	. 202
	10	. 168	.171	. 171	. 174	. 130	. 144
-2.5	1	. 347	. 354	. 364	. 449	. 489	. 571
	2	. 177	. 273	. 272	. 391	. 381	. 386
	3	. 254	. 267	. 300	. 338	. 346	. 3288
	4	. 257	. 290	. 294	. 335	. 325	. 335
	5	. 260	. 278	. 267	. 336	. 312	. 314
	6	. 245	. 245	. 270	. 288	. 277	. 266
	8	. 230	. 244	. 269	. 261	. 265	. 212
	10	. 199	. 210	. 230	. 230	. 247	. 175
-4.3	1	. 325	. 321	. 357	. 352	. 363	. 336
	2	. 205	. 232	. 240	. 260	. 279	. 256
	3	. 220	. 182	. 235	. 215	. 231	. 209
	4	. 212	. 231	. 179	. 190	. 198	. 186
	5	. 180	. 202	. 183	. 165	. 198	.186 .183
	6	. 184	. 184	. 139	. 191	.198 .170	.183 .173
	8 10	. 154	. 147	. 125	. 136	. 147	. 136
	10	. 141	. 155	. 106	. 110	. 161	. 103
-6.5	1	. 288	. 293	. 322	. 302	. 382	. 279
	2	. 205	. 246	. 227	. 246	. 265	. 2781
	3	. 159	. 180	. 198	. 183	. 221	. 261
	4	. 199	. 149	. 152	. 152	. 198	. 195
	5	.177	. 154	. 163	. 139	. 171	. 150
	6	. 147	. 147	. 130	. 130	. 168	. 179
	8	. 135	. 135	. 135	. 138	. 152	. 179
	10	. 109	. 129	. 112	. 109	. 143	. 124

-All valces in this table are of $-V$; the all values of V are segative. 1.e.. direoted downerd.

TABLE A-3
Pressure-probe Measurements of $⿴(m / s)$ for Pattern No. 1 (Table I)

2/H	x/H						
	y/ H	2	4	6	10	16	28
0	1	0	0	-. 068	$-.076$	-. 084	$-.182$
	2	-. 294	-. 187	0	-. 084	0	0
	3	-. 308	-. 202	$-.101$	-. 098	0	0
	4	-. 314	-. 208	0	0	0	0
	5	-. 209	-. 213	0	0	0	0
	6	-. 106	-. 217	0	0	0	0
	8	-. 110	-. 222	0	0	0	0
	10	-. 225	-. 112	0	0	0	0
-2.5	1	. 986	. 783	. 726	. 552	. 457	. 360
	2	. 100	. 307	. 390	. 390	. 3 年	. 392
	3	. 103	. 106	. 101	. 304	. 301	. 301
	4	0	. 105	. 105	. 208	. 206	. 299
	5	0	0	. 106	. 106	. 210	. 213
	6	0	0	. 108	. 216	. 214	. 217
	8	0	0	. 111	. 111	. 111	. 221
	10	0	0	. 113	. 113	. 113	. 228
-4.5	1	. 574	. 282	. 277	. 181	. 092	0
	2	. 305	. 201	. 199	. 199	. 099	0
	3	. 105	. 210	. 103	. 103	. 103	0
	4	. 106	. 106	. 105	. 106	0	0
	5	0	. 107	0	0	0	0
	6	0	0	0	0	0	0
	8	0	0	0	0	0	0
	10	0	0	-. 114	0	0	0
-6.5	1	. 098	. 195	. 193	. 193	. 096	. 208
	2	. 104	. 207	. 207	. 104	. 207	. 208
	3	.108	. 108	. 108	. 108	. 214	. 219
	4	0	. 110	. 110	. 110	. 221	. 111
	5	0	. 112	. 111	. 111	. 112	. 112
	6	0	0	. 113	. 113	. 112	. 114
	8	0	0	0	0	. 115	.115
	10	0	0	0	0	. 116	. 117

TABLE A-4

Pressure-probe Measurements of $\mathrm{D}(\mathrm{m} / \mathrm{s})$ for Pattern No. 6 (Table I)

2/H	x/H						
	Y/B	2	4	6	10	16	28
0	1	3.891	3.892	4.137	4.451	4.830	5.094
	2	4.765	4.682	4.680	4.761	5.021	5.278
	3	5.595	5.392	5.425	5.318	5.386	5.419
	4	5.943	5.911	5.849	5.815	5.751	5.719
	5	6.124	C. 065	6.032	6.032	6.003	5.942
	6	6.212	6.213	6.183	6.124	6.125	6.154
	8	6.331	6.360	6.331	6.330	6.273	6.330
	10	6.531	6.503	6.532	6.503	6.503	6.474
-2.5	1	4.685	4.676	4.904	4.979	5.056	5.142
	2	5.279	5.206	5.214	5.279	5.350	5.388
	3	5.753	5.624	5.556	5.553	5.587	5.584
	4	5.877	5.846	5.814	5.814	5.812	5.749
	5	6.000	5.940	6.000	5.969	5.969	5.938
	6	6.060	6.061	6.031	6.031	6.061	6.090
	8	6.269	6.269	6.239	6.211	6.270	6.269
	10	6.410	6.413	6.415	6.386	6.416	6.412
-4.5	1	5.289	5.269	5.150	5.367	5.404	5.280
	2	5.775	5.742	5.782	5.800	5.800	5.743
	3	5.979	5.907	5.937	5.997	6.026	5.967
	4	6.099	6.098	6.097	6.116	6.118	6.059
	5	6.195	6.216	6.216	6.216	6.244	6.177
	6	6.341	6.309	6.311	6.310	6.302	6.295
	8	6.431	6.459	6.425	6.424	6.418	6.442
	10	6.543	6.543	6.594	6.621	6.594	6.555
-6.5	1	5.543	5.510	5.408	5.386	5.335	5.352
	2	5.895	5.864	5.872	5.812	5.812	$5.74{ }^{\text {c }}$
	3	6.085	6.055	6.086	6.029	5.999	5.967
	4	6.204	6.115	6.204	6.179	6.179	6.179
	5	6.350	6.350	6.325	6.268	6.239	6.238
	6	6.407	6.407	6.353	6.355	6.326	6.355
	8	6.522	6.522	6.467	6.469	6.441	6.469
	10	6.606	6.606	6.579	6.533	6.553	6.553

TABLE A-5

Pressure-probe Mesurements* of $-V(m i s)$ for Pattern No. 6 (Table I)

	1/8						
z/H	y/B	2	4	6	10	16	28
0	1	. 963	1.014	. 864	. 765	. 593	. 531
	2	. 543	. 595	. 616	. 585	. 572	. 485
	3	. 332	. 377	. 398	. 442	.44?	. 426
	4	. 340	. 356	. 353	. 376	. 389	. 387
	5	. 332	. 323	. 345	. 345	. 346	. 358
	6	. 336	. 336	. 324	. 332	. 332	. 330
	ε	. 321	. 313	. 285	. 304	. 293	. 304
	10	. 374	. 295	. 239	. 264	. 249	. 268
-2.5	1	. 527	. 440	. 456	. 500	. 311	. 429
	2	. 233	. 346	. 367	. 377	$.3{ }^{\circ}$. 383
	3	. 290	. 307	. 317	. 357	. 37%	. 372
	4	. 311	. 315	. 319	. 339	. 357	. 367
	5	. 312	. 302	. 331	. 335	. 316	. 339
	6	. 322	. 304	. 308	. 308	. 322	. 336
	8	. 276	. 276	. 298	. 284	. 276	. 294
	10	. 275	. 275	. 240	. 244	. 240	. 292
-4.5	1	. 487	. 468	. 617	. 586	. 576	. 421
	2	. 374	. 398	. 413	. 467	. 467	. 347
	3	. 348	. 394	. 407	. 417	. 430	. 316
	4	. 349	. 367	. 385	. 416	. 398	. 385
	5	. 337	. 368	. 368	. 368	. 381	. 306
	6	. 317	. 373	. 338	. 356	. 373	. 290
	8	. 323	. 319	. 340	. 357	. 339	. 254
	10	. 325	. 325	. 317	. 330	. 317	. 240
-6.5	1	. 377	. 382	. 412	. 341	. 363	. 346
	2	. 322	. 328	. 273	. 261	. 261	. 272
	3	. 258	. 259	. 246	. 216	. 234	. 261
	4	. 249	. 260	. 249	. 215	. 202	. 215
	5	. 230	. 230	. 180	. 188	. 208	. 227
	6	. 222	. 222	. 228	. 186	. 197	. 194
	8	. 225	. 225	. 198	. 164	. 168	. 164
	10	. 216	. 200	.18E	. 154	. 154	. 154

-All velues in this table are of $-V$; thes all values of V aro gegative. 1.e.. directed dowawerd.

TABIK A.

8/H							
zin	y/11	2	4	0	10	10	28
0	1	0	.008	. 072	. 155	. 108	.178
	2.	0	. 082	0	.083	. 175	. 184
	3	0	0	0	.003	. 004	. 189
	4	0	0	0	. 101	. 100	. 100
	5	. 107	0	. 105	. 105	. 103	. 104
	0	. 108	0	. 108	. 107	0	. 107
	i	0	0	. 111	. 111	.190	. 111
	10	0	0	. 114	. 113	. 113	. 13
-2.5	1	. 742	. 741	. 429	. 348	. 205	0
	2	. 309	. 364	. 182	. 277	.187	0
	3	. 100	. 008	. 104	. 104	. 007	. 097
	4	. 103	. 102	. 101	. 101	. 101	.100
	5	. 105	. 104	. 105	. 104	.104	. 104
	0	. 106	. 108	. 105	. 105	0	. 104
	8	. 109	. 109	$.10{ }^{\circ}$. 108	0	. 100
	10	. 224	. 112	. 11.	.112	0	. 112
-4.5	1	. 74.1	. 647	. 032	.659	. 508	. 184
	2	. 607	. 003	. 500	. 010	. 610	. 301
	$?$. 418	. 517	. 519	. 524	. 527	. 208
	4	. 420	. 426	. 420	. 335	. 535	. 211
	5	. 324	. 434	. 434	. 434	. 437	. 216
	6	. 332	. 331	.331	. 131	. 441	. 270
	8	. 225	. 225	. 3.37	. 397	. 449	:
	10	. 229	. 220	. 346	. 347	. 346	. 114
-0.5	1	. 290	. 280	. 285	. 094	0	0
	2	. 300	. 307	. 205	101	. 101	. 100
	3	. 212	. 211	. 212	. 109	. 105	. 104
	4	. 217	. 214	. 217	. 108	. 108	. 108
	5	. 222	. 222	. 110	0	0	0
	6	. 224	. 224	.111	0	0	0
	8	. 114	. 114	.113	0	0	0
	10	. 115	. 115	.115	0	0	0

TARIF A 7

Walo Charactoristios

Pattorn

No.

	δ_{1} / H	2.2	2.7	3.1	3.6	4.4	5.0
	$\mathrm{B}_{3} / \mathrm{H}$	1.2	1.1	1.4	1.5	1.7	2.7
1	A	. 95	. 00	. 55	. 45	. 32	. 23
	$\delta_{\mathrm{m}} / \mathrm{H}$	1.5	1.5	1.9	2.1	2.4	2.7
	$\mathbf{u c m}^{\prime}$ / ${ }^{\text {c }}$	5.2	4.8	4.5	3.8	3.5	2.5
	δ_{1} / H	3	3	3.2	4	4	4.8
	δ_{3} / H	. 8	. 95	1.2	1.5	1.7	2.6
2	A	. 5	. 49	. 43	. 32	. 29	. 21
	δ_{m} / H	1.5	1.5	1.9	1.0	1.9	2.6
	4'm'10*	4.3	4.1	4.0	3.6	3.2	2.4
	$\delta_{1} / 11$	2	2.5	2.0	3.2	3.5	4.2
	$8,1 \mathrm{H}$	1	1.1	1.2	1.4	1.7	2.1
3	A	. 87	. 65	. 45	. 29	. 23	. 14
	$\mathrm{Cm}_{\mathrm{m}} / \mathrm{H}$	1.2	1.5	1.5	1.5	1.9	2.4
	$\mathbf{u c}^{\prime} /{ }^{\circ}$	4.7	4.3	3.8	3.1	2.8	2.2
	$8_{1} / \mathbf{i}$	2	2.4	2.6	2.9	3	3.5
	δ_{s} / H	. 0	. 7	. 9	1.05	1.1	1.1
${ }^{4}$	A	. 72	. 39	. 31	. 23	. 22	. 14
	$8_{m} / \mathrm{H}$	1.0	1.2	1.2	1.2	1.2	1.2
	$\mathrm{u}^{\prime} \mathrm{m}^{\prime *}$	3.9	3.5	3.2	2.8	2.6	2.3
	δ_{1} / H	2.9	3.4	3.5	3.8	3.9	4.8
	$8_{8} / \mathrm{H}$. 95	. 95	1.1	1.3	1.8	2.5
5	A	. 51	. 43	. 39	. 31	. 27	. 18
	$8 / \mathrm{m}$	1.5	1.5	1.5	1.9	1.9	2.4
	4's/10	4.4	4.2	3.9	3.5	3.1	2.5
	$81 / \mathrm{H}$	3.8	4.3	4.7	4.7	5.1	5.8
	8.1	. 85	1.1	1.5	1.8	2.2	2.9
6	1	. 43	. 40	. 39	. 35	. 31	. 22
	8/ $/ \mathrm{H}$	1.9	1.9	2.4	2.4	2.4	3.3
		4.5	4.4	4.1	3.6	3.3	2.5
	$8_{1} / 8$	4.9	4.8	4.9	5.1	5.2	5.5
	8 /h	. 75	. 96	1.3	1.7	2	2.7
7	n	. 41	. 38	. 38	. 35	. 33	. 24
	$8 \mathrm{~m} / \mathrm{n}$	1.2	1.5	1.9	2.4	2.4	3.3
	- ${ }^{\text {a }}$ U*	4.4	4.3	4.1	3.7	3.4	2.5
	$81 / 8$	2.3	2.7	3	3.8	4.6	5.9
	$88 / 8$	1.1	1.1	1.25	1.6	1.8	2.8
8	1	. 80	. 72	. 50	. 51	. 42	. 29
	818	1.3	1.5	1.9	1.9	2.4	1.3
		4.8	4.9	4.9	4.3	4.0	3.0

Pattern
No.

0	$61 / 1$	2.5	2.5	2.7	2.7	2.9	4
	8. $/ \mathrm{H}$. 55	5	. 5	. 55	. 8	1.1
	\wedge	. 14	. 19	. 17	. 19	. 20	. 17
	$\delta_{\text {m }} / \mathrm{H}$. 1	. 2	. 5	1.0	1.2	1.9
	$\mathbf{u c}^{\prime}{ }^{\prime \prime 10}$	2.5	2.0	2.6	2.7	2.7	2.6
10	δ_{1} / H	2.5	2.5	2.9	3.3	3.3	3.6
	$8 . / \mathrm{H}$. 5	. 55	. 55	8	. 95	1.3
	\wedge	. 16	. 19	. 19	. 20	. 21	. 18
	$\delta_{\text {max }} / \mathrm{n}$. 8	. 8	. 8	1.2	1.2	1.9
	$3^{\circ} /{ }^{\circ}$	2.5	2.6	2.7	2.8	2.8	2.5
11	δ_{1} / H	2.3	2.8	2.7	3	3.3	3.8
	$8_{8} / \mathrm{H}$. 75	. 75	. 85	. 95	1	1.5
	A	. 19	. 20	. 25	. 24	. 22	. 20
	8.1 H	. ${ }^{\text {(}}$. 9	1.2	1.5	1.5	1.9
	$0^{\circ} \mathrm{m} / 10$	2.5	2.6	2.6	2.8	2.8	2.6
12	$8_{1} / \mathrm{H}$	2.2	2.8	3. 5	4.4	4.9	6
	$8 . / \mathrm{H}$	1.1	1.2	1.3	1.7	2.3	3
	A	1	. 77	. 58	. 47	. 42	. 27
	$8 \mathrm{~m} / \mathrm{H}$	1.5	1.9	1.9	2.4	2.4	3.3
	u'm/ ${ }^{\text {* }}$	5.4	5.0	5.0	4.4	3.9	2.9
13	$81 / \mathrm{H}$	2.3	2.8	3.2	3.9	5	5.7
	8./ $/ \mathrm{H}$	1.2	1.25	1.3	1.7	2	2.8
	A	1.2	. 93	. 59	. 5	. 38	. 26
	$8 \mathrm{~m} / \mathrm{H}$	1.5	1.5	1.9	1.9	2.4	3.3
	u's ${ }^{\text {c* }}$	5.3	4.9	4.8	4.1	3.8	2.8

