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ABSTRACT

In this paper, a concatenated coding scheme for error control in data com-

munications is analyzed. In this scheme, the inner code is used for both error

correction and detection, however the outer code is used only for error detection. 	 i

A retransmission is requested if the outer code detects the presence of errors

after the inner code decoding. Probability of undetected error is derived and 	 ?
j

bounded. A particular example, proposed for NASA telecommand system is analyzed.

k
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1. Introduction

Consider a concatenated coding scheme for error control for a binary sym-

metric channel with bit-error-rate E<1/2 as shown in Figure 1. Two linear block

codes, C  and Cb , are used. The inner code C f , called frame code, is an (n,k)

code with minimum distance d f . The frame code is designed to correct t or fewer

errors and simultaneously detect a(a>t) or fewer errors where t+a+1<d f . The

outer cede C  is an (n b ,k b ) code with minimum distance d  and

n  = mk

where m is a positive integer. The outer code is designed for error detection

only.

The encoding is done in two stages. A message of k b bits is first encoded

into a codeword of n  bits in the outer code C b . Then the n b-bit word is divided

into m k-bit segments. Each k-bit segment is encoded into an n-bit word in the

frame code C f . This n-bit word is called a frame. Thus, corresponding to each

kb-bit message at the input of the outer code encoder, the output of the frame	 11

s

code encoder is a sequence of m frames. This sequence of m frames is called a

block. A two dimensional block format is depicted in Figure 2.

The decoding consists of error correction in frames and error detection in

m decoded k-bit segments. When a frame in a block is received, it is decoded

based on the frame code C f . The n-k parity bits are then removed from the

decoded frame, the k-bit decoded segment is stored in a buffer. If there are

t ur fewer transmission errors in a received frame, the errors will be corrected

and the decoded segment is error free. If there are more than a errors in a

received frame, the decoded segment may contain undetected errors. After m

frames of a block have been decoded, the buffer contains m k-bit decoded segments.

Then error detection is performed on these m decoded segments based on the

outer code C b . If no error is detected, the m decoded segments are assumed to
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be error free and are accepted (with the nb -kb parity bits removed) by the

receiver. If the presence of errors is detected, the m decoded segments are

discarded and the receiver requests a retransmission of the rejected block.

Retransmission and decoding process continues until a transmitted block is suc-

cessfully received. Note that a successfully received block may be either error

free or contains undetectable errors.

The error control scheme described above is actually a combination of

forward-error-correction (FEC) and automatic- repeat- request (ARQ), called a

hybrid ARQ scheme [1]. The retransmission strategy determines the system

throughput, it may be one of the three basic modes namely, stop-and-wait, go-back-

N or selective-repeat. In this paper, we are only concerned with the reliability

of the proposed error control scheme. The reliability is measured in terms of

the probability of undetected error after decoding. The probability of undetected

error is derived and bounded.

An example scheme, proposed for NASA telecommand operation, is analyzed.

2. Probability of Undetected Error for the Frame Code

For a codeword v in the frame code Cf , let W( -V), w (1) (v) and w (2) (v) denote

the weight of v, the weight of the information-part of v and the weight of parity-

part of v respectively. Clearly w(v)=w(1)(v)+w(2)(v). 	 If a decoded frame con-

tains an undetectable error pattern, this error pattern must be a nonzero code-

word in C f [1-3]. Let eO be a nonzero error pattern after decoding. Since e0

is a word in C f , we have

w (1) (e0 ) + w (2) ( eo) ? df ,	 (1)

and

w(1)(eO) ? J..	 (2)

The probability P f (eO ,c) that a decoded frame contains a nonzero error vector

e0 after decoding is given by [2,4,5],

-3-
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P(e ^ E ) _	
t min(t-i,n-w) w n-w w-i+j 	 )n-w+i-j

f 0	 I	 I	 (i)( j ) E 	( 1 —E	 (3)

i =0	 j=0

where w = vi(e0).

In the following we will derive an upper bound on P f (eO ,E). Let Qt(w,E)

denote the right-hand side of (3). For w < n-1-j,

w+1 n-w-1	 +1-i+j	 n-w-1+i-j
(	

w	
)

i )( j	
)E	 (1-e	 _	 (w+l)(n-w-j )E	 (w+1)E c	 (4)

(w)(n^w)Ew -
i+j(l-E)n

- w+i - j 	w+l-i n-w 1-E —< w+1-t 1-_

Since w > 2t+1, we have that
w+1	 2t+2	 (5)

w+1-t —< t+2

It follows from (4) and (5) that, for E < 3t+4

Q t ( w+l , E ) < Q t ( w ' E)	 (6)

For a positive integer i, define S(i) as follows:

(1) If the frame code C  is an even-weight code, then

d f , for i < d 

s(i) =	 i, for even i an6 i > d 

i+1, otherwise.

(2) If C  is not an even-weight code, then

W) = max(d f) i) .

For a nonzero error pattern e 0 which is a codeword in C f , we see that

	

w (e0 ) > 6(w(1)(e-0)) •	 (7)

It follows from (3), (6) and (7) that, for 0<E<(t+2)/(3t+4),

Qt(w(e-0),E) < Qt(8(w(l)(e-0)),E) •	 (8)

For E«1/n, vie can see from (3) and (8) tha:

r

a l

-4-	
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P (e 

'E) < (
	

t

s(w W (e0))lES(w(1)(e0))-t(1-E)n-i3(w(1)(e0))+t 	 (g}
f 0	 — \

3. Probability of Undetected Error for the Outer Code

Recall that a codeword in the outer code C  consists of m k-bit segments.

At the receiver, error detection is performed on every m decoded segments based

on Cb . Let P b (e,E) denote the probability that the decoded word contains an

undetectable error pattern e-(a nonzero codeword in C b ). For a codeword v in

Cb , let v (j) denote the j-th segment of v, and let w j (v) be the weight of the

codeword in frame code C  into which v (j) is encoded. Then it follows from (3)

that for an undetectable error pattern e in a block

m

Pb (e,E) = 

j
II Qt(wj(e},E)
=1

Let P (b) (E) be the probability of undetected error for the outer code C b . Then

Pud ) (6) _ _	 _ Pb (e,E)	 (11)

eECb-{0}

Fcr 1<jl<j2<...<jh-T, consider the set of codewords in Cb where nonzero bits

are confined in the j l -th segment, the j 2 -th segment,..., and the j h -th segment.

This set of codewords forms a subcode of C b , call a (jl,j29...,jh)-subcode of

C  and denoted by Cb(jl'j2'"''jh)'	 1f C  is a cyclic or shortened cyclic code,

then	 i

(1) for h = 1, all (; l )-subcodes of C  are equivalent;

(2) for h>2, all (jl'j2'""'jh)-subcodes of C  with the same j2-jl5j3-j2'

''-lih-jh-1 are equivalent codes and are called h-segment (j2-jl'

j 3 -j 2 9 "'' j h 
jh-1) subcodes of Cb.

Consider a 0 1 ,j 2 ,...,j h )-subcode of Cb . * Let il,i2, ... ,ih,rl,r29 ... 9rh

be a set of integers for which 0<i q <k and 0<rq <n-k with 1<q<h. Let

^	 j1,j2,...,jh
A (i1,r1),(i2,r2),	 ,(ih,rh) denote the number of codewordsv in 

C b (i 1' j 2' ... ih)

r
-5-

v
Apr.-

(10)



m

OF POOR QUALITY

such that, for 1<q<h, the j q -th segment v (jq) of v has weight i q and

wjq(v) = i q +rq . Then it follows from (10), (11) and the definition of

A J1,J2 .... ,jh 	
that

01,r01021r2),...,(ih,rh)

m
Pubd)(E) = 

hI1Qt(^'E)m-
h(1<J1<j2<...<j^<m IRh

	

Jl,J2,...,jh	 h

	

A(il,rl),(i2,r2),...,(ih,rh) n Q t (i q +rq , E )j,	 (12)
q=1

where

IRh = {((il,rl),(i2,r2),...,(ih,rh)): 	 1<iqk,

h

0<rq<n-k, d f <i q +rq (1<q<h) and db <	 iq < n b 
1

	

q=1	 — 

If C  is a cyclic or shortened cyclic code, then Eq. (12) can be simplified

as follows:

m

P ua ) (e) _	 Qt(O,$)m`h	 (m-jh+l)

h=1	 1<jl<j2< ... <jhrT

EA(1 , 1r

1,J2, ... ,j h	h	 l

	

  ),( i ,r ),...,(i ,r ) = Q (i +r , E ) (	 (13)
IRh 	1	 2 2 ) "'" ( ' h h g l t q q	 I

From (12) we see that, if we know the detail weight structure of

Cb (j l ,j 2 " 
"gjh)' the error probability P (b) ( : ) can be computed. However, for

J
a given Cb, it is rot easy to find A(i

J1,J2,•••,

l,rl),(i2,h r2),...,(ih,rh). 	
To overcome

this difficulty, we will drive upper bounds on the terms on the right-hand side

of (13). We assume that e < (t+2)/(3t+4). It follows from (8) that

	

n-k n-k n-k j l ,j 2^ -- 9 Jh	 h +r

r 1 =0 r2 0 rho A ( i l ,r l ),( i 2 , r 2 ),...,( •i h , r h ) q ^ 1 Qt(iq	 q'E)

	

—Ail,i2,	
' i ha 	 Q t W i q ),E) ,	 (14)

1' 2''	 h q=1

M •

I'

-6-
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where

	

jl,J2,...,jh	 n-k n-k	 n-k	 Jl,j2"'"
Jh

	

A i l ,i 2 ,...,i h	r	
0

I0 r I•.r Ip A(il,rl),(i2,r2),- ..,(ih,rh)
1	 2	 h

Since the check bits are uniquely determined by the information bits,

	

J1,J2,•••,Jh	 ••,j ) whose weight
i l ,i 2A,	 'ih	 l2

is the number of code^iords in Cb(j'j 	 h	 9

in the j q -th segment is i q for 1<q<h.

For a nonzero codeword v in C b , we define the weight configuration of

v as the sequence of nonzero weights of component segments of v, arranged in

ascending order. For an undetectable error pattern e with weight configura-

tion (il,i2,...,ih), it follows from (8) and (10) that

h

Pb (e,E) < TI 
1 
Q t(6( i q ),E)	 (15)

q=

Consequently we have the following upper bound on P (b) ( ),
ud

	

(b)	

h

P	 (E) < _	 _	 n Q (s(i ),E)	ud	
— eECb -(0) q = 1 t	 q

4. Example

Consider the concatenated coding scheme proposed for NASA telecommand

system in which both inner (frame) code and outer code are shortened Hamming

codes. The frame code C  is a distance-4 Hamming code with generator

polynomial,

9(X) = (X+1)(X6+X+1) = X7+X6+X2+1 ,

where X 6+X+1 is a primitive polynomial of degree 6. The maximum length of
this code is 63. This code is used for single error correction. The code is

capable of detecting all the error patterns of double and odd number errors.

The outer code is also a distance-4 shortened Hamming code with generator

polynomial,

k	 ; n
-7-
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9(X) = (X+1)(X15+X14+X13+X12+X4+X3+X2+X+1)

= X16+X12+X5+1

4+X3 +X`+X+1 is a primitive polynomial of degree 15. This

GUUC IJ Wit A.LJ b^GIIUard for packet-switched data networks [6]. The natural

length of this code is 2 15 -1 = 32,767. But the maximum length of n  being con-

sidered is 3,584 bits. We assume that the number of frames in a block is greater

than 3 and less than 65. 'rhe 16 parity bits of this code is used for error

detection only.

It follows from (9) and (15) that V`e smallest power of E in the right-

hand side of (15), denoted 0 (e- ) is

h

I 5(i q
) - th	 (16)

q=1	 q

which is called the order of e-.

To evaluate P (b) (E), we need to know those error patterns e- for whichud

0 r (e- ) is small. The weight configurations of error patterns for which O E (e-) is

less than 10 are listed in Table 1. The order of-an error pattern e, 0E(e),

is at lerst

w(e-) - Lw(e)/4j	 (17)

which occurs for the weight configuration

(4,4,...,4,w(e)-4Lw(e) /4J +4)

where Lxj denotes the largest integer no greater than x.

Suppose that n>7 and

E < 1/2n	 (18)

Then 
(,_,)n> 

1/2 and (1-c)/c>13.	 Note that

1/w _ e w(1-e) 
n+1	

E	 n-w/-£ 2 1/w

Q 1 (w ' c)	 11-E	 c	

] 1/w [

1 +	 +w 1-c	 w C1E-^ I	 (19)

-8-
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which decreases monotonically as w increases for 4<w<n. Hence

Q1(w',E)1/w' < Q 1 ( w ,E) 1/w , (ZO)

for 4<w<w'<n. It is easy . to check that

Q 1 
(4,E) < Q 1 (6,E) 1/2 .
	

(21)

and that

Q 1 (4,E)Q 1 (8,E) <_ Q 1 
(6,F-)

2
	 (22)

It follows from (15), (20), (21) and (22) that

1) for an error pattern e- in an h-se gment subzode with h>3,

P b (e,E) < Q
1
 (4,E:)

3 ;
	 (23)

2) for an error pattern e- of weight 12 whose weight configuration

is not (4,4,4),

Pb(e,E) < Q 1 (6,E) 2 ;	 (L4)

3) fo g• any nonzero error pattern e,

w(e )/4

IQ1(4,c)Lw(e)/4j-1

Q1(4,E)	 if w(e) is a multiple of 4,

P b (e,E) < 
	

(25)
 Q1 (6,E), otherwise.

Now we will consider how to evaluate P (b) (E) of (13). For 4<i<n-4 and
ud

0<r<r.	 Al i,r) can be computed as is shown in Appendix. We found that for n<63

A
l	

Al(4,0) =	 (6,0) = 0 ,	 (26)

and that for n<39

A(8,0) = 0.	 (27)

On the other hand, it is time-consuming to obtain A1'j2••.•,Jh
(il,rl),(i2,r2),..	 0 h,rh)

for :,>2. However it is not difficult to compute Ai'^2 for 2<j<m as is shown
1 2

in the Appendix. The weight Ai'^?2	 can be computed from the weights of the dual

-9-

fh



s

OF FOOR QUALi-N

code of the 2 segment (.j 2 -).) subcode of C b . Since it is time-consuming to

1,j2,...,jh
obtain Ai ,i ,	

, ' h
 for h>3, we will use some upper bounds on Pb(e,E).

Let (0 ) } be the wei g ht distribution of the outer code C b . {A^ b) } can

be computed from the weiaiit distribution of the dual code of C  (see Appendix).

Then it follows from (13), (14) and (23) that we have the following bounds:

10 6

P b (e,E) < m I	 I A l 	Q (i +r,c)	 (28)
w(e)<10	 i=4 r=0 (i,r) 1

eisina

one segment subcode

2
P b (e,E) <	 (m-j+l)	 A1'3	 R Q (30),E)	 (L9)

w(e)<10	 — L<j<m	 i1+i2<10 ill '2 p=1 1
	 P

e is in a	 i1,i2>1
2-segment subcode

I	 P b (e,e) <	 I (A2b) -mA1 -
w(e)<10	 ( i=2

e is in an
h-segment subcode

with h>3

m

(m-j+l)	 Ai , j	 Q (4,c)3 .
J=2	 1 <il,i2<10 i

l ,i	 1	
(30)

It can be shown that the following inequalities hold:

A1, j l, j 2 < ( k )' 1 ) 2 	 (31)4,4,4	 — 3 4

Al b) < ( ib )	 (32)

nb 
n 	 i/426	 (n 26)	 26/4

,( 
i 
A

l 
(4,C)	 < (26/n 

b
) -	 (1-26/n b )	 b	 Q 1 ( 4 , c)	 (33)

(the third inequality is obtained by using Chernoff inequality [7]).

It follows from (?4), (25) and (31) that

- I	 P b (e,E) < A l2 ) Q 1 (6,E) 2 + min•1(a)(4)2(3),Al2)!Q1(4,0 3	 (34)

W(i)=12

Using the inequalities of (25), (32) and (33), we have

-10-
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_^	 P b (e,E) < I A(b )Q 1 (4 ' E)i +	 A4b+2 Q 1 (4,E)
i-1

Q (6,E)	
^(

	

w(e)>14	 i=4	 113	 1

+ (26/n b ) -26 (1-26/nb )
-(n b-2b)

Q 1 (4, E ) S Q 1 ( 6 ,E)	 (35)

It follows from (28), (29), (30), (34) and (35) that we obtain the following

bound on p(b)

10 5Pud )(E ) < m 
i 8 r 0

A^i,r)Ql(i+r,E)
= 

l,j 2
+	 (m-j+l)	 Ai 

,i	
n Q 1 (B(i ),E)

2<j<m	 it+i2<10	 1 2 p=1	 p

1<i1,i2

5

+(A(b '-mA 1 ) -	 (m-j+1)	 A1,j	
Q (4,E)3

=2	
2i	 2i	 •=2	

i +i <1C	 ^1'^2^	 11i ^	 1 2_

i<il'i2

+ min
(
 (3)(4)2(;), Al2))•Q1(4,e)3 + Al2)Q1(6,E)2

+ I A4 i	 i (4.c) i + I A4b+2Q1(4^e)i-JQ1(6,E)

i=4	 i=3

+ (26/n b ) -26 (1-26/n b )
nb-26

 Q 1 ( 4 ,E)
.5
 Q1(6,c)	

(36)

On the other hand, it follows from (13) that

10	 6

Pud)(e) > 
m Q1(O^E)m-1	

A^i^r)Q1(i+r,E)	 (37)
i=4 r=0

i

For various c, k and m, the bound on Pud)(E) given by (36) is f aluated

and plotted in Figures 3 through 6. Numerical data is given in Tables 2, 3 and

4, where "upper bound" is the value of the righthand side of (36) and "lower

bound" is the value of the righthand side of (37). We see that, for E<10 -5 .	 {

the coding scheme provides very high reliability.

o f PV Vet ^:: r.Ll : T	 '
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5. Conclusion

In this paper a concatenated coding scheme for error control is presented.

The reliability performance of this scheme is analyzed for a binary symmetric

channel. Particularly, the scheme considered by NASA for possible adoption in

telecommand operations is analyzed. It is shown that, for E<10 -5 , the scheme

provides very high reliability.

1

E

i
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APPENDIX

Let Cbf denote the (n,k+k b -n b ) linear subcode of frame code C  consisting

of those codewords of C f whose information-part (the first k components) is a

codeword of the first single segment subcode of outer code C b , and let Cbf

denote the dual code of Cbf' Cbf has a codeword u l (or u 2 ) whose first k bits

are all ones (or zeros) and whose last n-k bits are all zeros (or ones). Let

Cb f ' be the (n,n-k+n
b
-k b-2) linear subcode of Cb f which does not contain ul

and u 2 . For 0<i<k and 0<r<n-k, let B (i,r) (or B^ i,r) ) be the number of codewords

of Cb f (or Cb f ') whose weights in the first k bits and in the last n-k bits are

i and r, respectively. Then we have that

B (i,r) = 
B (i,r) + '(k-i,r) + B (i,n-k-r) + '(k-i,n-k-r) '	

(Al)

Cb f ', has 2 21 codewords. We obtained Bj i,r) with 1<i<k and 1<r<n-k by generating

all codewords in an efficient way [8]. Then we computed B (i,r) by (Al) and

found A^ i ^ r) from B (i ^ r) 's by the MacWilliams' identity [3]:

A0, 
r) = 2-(n-k+nb-kb)(	 I	 n^ B(i,^r,)Pi(i.';k)Pr(r';n-k)

1i' =0 r =0

where P k (x;j) is a Krawtchouk polynomial.

Let Cb be the dual code of outer code C b , and Cb,j be the dual code of the
2-segment 0-1) subcode of C  with 1<j_m. For 0<i<n b , let B  denote the number

of codewords of weight i in C b ; and for 1<j<m, 0<i I <k and 0<i 2 <k, let Bi1i 2 be

the number of codewords in Cb,j whose weights in the first half and in the last

half are i t and i 21 respectively. Both Cb and Cb,j have 
216 

codewords. By

using the fact that the dual code of the Hamming code is a maximum-length-

sequence code, we obtained B i with 
0<i<nb 

and B1'
 1,12 	 l

^ 	 with 1<j<m, 0<i l <k and

0<i 2 <k by computer [8]. Then w e computed Al b) from V s and Ai,j 
i 

from

1 2

B^ '^i 's, respectively, by the MacWilliams' identity.
'19'2

-13-
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Figure 1 A concatenated coding system
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Table 1 Weightconfiguration of error patterns e's

with 0 . (e) < 10.

weight
weight

configuration h OE (e)

(	 1.	 3	 ) 2 6

4 (	 2.	 2	 ) 2 6

(	 1,	 1.	 2	 ) 3 9

(	 1.	 5	 ) 2 8
(	 2.	 4	 ) 2 6

(	 3,	 3	 ) 2 6

6 (	 1.	 1,	 4	 ) 3 9

(	 1,	 2,	 3	 ) 3 9

(	 2,	 2.	 2	 ) 3 9

(	 2,	 6	 ) 2 8
(	 3,	 5	 ) 2 8
(	 4.	 4	 ) 2 6

II (	 1,	 3,	 4	 ) 3 9

(	 2,	 2,	 4	 ) 3 9
I (	 2,	 3,	 3	 ) 3 9

(	 4.	 6	 ) 2 8

1 0 (	 2.	 4.	 4) 3 9

(	 3,	 3.	 3	 ) 3 9

12 (	 4,	 4,	 4	 ) 3 9

h: the number of nonzero segments
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Table 2 Upper bounds and lower bounds on the probability of

undetected error for bit error rate e = 10-4

m
IB 3 4 5 6 7

upper bound 1.07E-18 6.05E-18 2.86E-17 1.18E-16 4.14E-16
4

lower bound 7.18E-19 2.15E-18 3.34E-18 4.05E-18 5.01E-18

upper bound 7.97E-18 6.85E-17 4.11E-16 1.90E-15 7.23E-15
14

lower bound 2.51E-18 7.53E-18 1.17E-17 1.42E-17 1.75E-17

upper bound 2.35E-17 2.57E-16 2.08E-15 1.48E-14 9.90E-14
24

lower bound 4.30E-18 1.29E-17 2.00E-17 2.43E-17 3.00E-17

upper bound 1.55E-16 4.45E-15 9.14E-14 1.32E-12 1.37E-11
34

lower bound 6.10E-18 1.82E-17 2.84E-17 3.45E-17 4.25E-17

upper bound 2.81E-15 1.48E-13 4.12E-12 6.80E-11 7.54E-10
44

lower bound 7.89E-18 2.36E-17 3.67E-17 4.46E-17 5.50E-17

upper bound 4.49E-14 3.12E-12 9.67E-11 1.68E-9 1.91E-8
54

lower bound 9.69E-18 2.90E-17 4.51E-17 5.47E-17 6.75E-17

upper bound 5.32E-13 4.24E-11 1.39E-9 2.46E-8 2.83E-7
64

lower bound 1.14E-17 3.44E-17 5.34E-17 6.48E-17 8.00E-17

m: The number of frames in a block

IB: The number of information bytes in a frame
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Table 3 Upper bounds and lower bounds on the probability of

undetected error for bit error rate E = 10-5

m
ÎB 3 4 5 6 7

upper bound 7.55E-24 2.56E-23 5.88E-23 1.54E-22 4.51E-22
4

lower bound 7.19E-24 2.15E-23 3.35E-23 4.07E-23 5.03E-23

upper bound 3.07E-23 1.36E -22 5.01E-22 1.86E-21 6.25E-21
14

lower bound 2.51E-23 7.55E-23 1.17E-22 1.42E-22 1.76E-22

upper bound 5. 98E-23 3.12E-22 1.37E-21 5.46E-21 1.88E-20
24

lower bound 4.31E-23 1.29E-22 2.01E-22 2.44E-22 3.02E-22

upper bound 9.51E-23 5.56E-22 2.66E-21 1.11E-20 3.83E-20
34

lower bound 6.11E-23 1.83E-22 2.85E-22 3.46E-22 4.28E-22

upper bound 1.38E-22 8.81E-22 4.52E-21 1.96E-20 7.09E-20
44

lower bound 7.91E-23 2.37E-22 3.69E-22 4.48E-22 5.54E-22

upper bound 1.92E-22 1.39E-21 8.09E-2 1 4.0?E-20 1.79E-19
54

lower bound 9. 71E - 23 2.91E-22 4 .53E-22 5.50E-22 6.79E-22

upper bound 2.81E-22 2.59E-21 2.01E-20 1. 39E - 19 9.78E - 19
64

lower bound 1.15E-22 3.45E-22 5'.37E-22 6.52E-22 8.05E-22

m: The number of frames in a block

IB:-The number of information bytes in a frame
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per bounds and lower bounds on the probability of

idetected error for bit error rate c = 10-6

m
 3 4 5 6 ,

upper	 bound 7.24E-29 2.20E-28 3.62E-28 5.22E-28 9.05E-28
4

lower	 bound 7.19E-29 2.15E-28 3.35E-28 4.07E-28 5.03E-28

upper	 bound 2.58E-28 8.17E-28 1.56E-27 3.15E-27 7.85E-27
14

lower	 bound 2.51E-28 7.55E-28 1.17E-27 1.42E-27 1.76E-27

upper	 bound 4.49E-28 1.48E-27 3.18E-27 7.66E-27 2.15E-26
24

lower bound 4.31E-28 1.29E-27 2.01E-27 2.44E-27 3.02E-27

upper	 bound 6.46E-28 2.21E-27 5.22E-27 1.41E-26 4.18E-26

34
lower	 bound 6.11E •-28 1.83E-27 2.85E-27 3.46E-27 4.28E-27

upper	 bound 8.50E-28 3.01E-27 7.67E-27 2.24E-26 6.88E-26
44

lower	 bound 7.91E-28 2.37E-27 3.69E-27 4.48E-27 5.54E-27

upper	 bound 1.06E-27 3.87E-27 1.06E-26 3.26E-26 1.03E-25

54
lower	 bound 9.71E-28 2.91E-27 4 .53E-27 5.50E-27 6.80E-27

upper	 bound 1.28E-27 4.80E-27 1.39E-26 4.46E-26 1.43E-25
64

lower	 bound 1.15E-27 3. 4 5E-27 5.37E-27 6.52E-27 8.06E-27

m: The number of frames in a block

IB: The number of information bytes in a frame
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