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1. Introduction

Hamming or shortened Hamming codes are widely used for error detection in
data communications. For example, the CCITT (International Te]égraph and
~ Telephone Consultative Committee) recommendation X.25 for packet-switched
data networks adopts a distance-4 cyclic Hamming code with 16 parity-check

bits for error detection [1]. The code is generated either by the polynomial,

3,(x) = () (KFox Bt 2exbexdanene)
= x164x12,x5,; | , | (1)
or by the polynomial
3,() = (xe1) (xP4x1%41)
= x164xl%iy41 | H (2)
where Xl5+X14+X13+X12+X4+X3+X2+X+1 and X15+X14+1 are primitive po]ynom1a1s‘0f"

15-1 = 32,767. 1In practice

degree 15. The natural length of this code is n =2
the length of a data packet is no more than a few thousand bits which is much
shorter than the natural length of the code. Consequently, a shoftened version
of the code is used. Often the length of a data packet varies, say from a few
hundred bits to a few thousand bits, hence the code must be shortened by various
degrees. Shortening affects the performance of the code. This is the subject’
of inveétigation in this paper.

For a random-error channel with bit error rate (or tfansition probability)

€, it was proved by Korzhik [2] that there exist (n,k) linear codes with prob-

ability Pe of an undetected error satisfying the following upper bound:
P, < 27K - (1-e)] (3)

for all n, k and ¢ with 0<e<1/2. Korzhik's proof is an existence proof, and
no general method has been found for constructing codes satisfying the bound
given by (3). Only a few classes of known codes [3-6] have been proved to

satisfy a weaker bound,






p <2kl (4)

A code is said to be good for error detection if it satisfies the above bound,
because the probability of an undetected error for the code is no greater thén
27(K) oven for the worst channel condition with e = 1/2. In fact for small

€, the error probability Pe is much smaller than 2-(n—k). Strict-sense Hamming
codes, distance-4 Hamming codes, doub]e-error-correéting and some triple-error-
correcting primitive BCH codes of natural length are known to satisfy the bound
given by (4) and their error probability Pe decreases monotonically as € decreases
[3-6]. Hence these codes are good error-detecting codes. Using a good error-
detecting code with a moderate number of parity-check bits (say n-k = 16~32) in

an automatic-repeat-request (ARQ) system, the probability of an undetected error

can be made very small and virtually error-free data transmission can be achijeved. -
Even though a Hamming code of natural length satisfies the error probability
bound, Pe < 2—(n-k), given by (4), a shortened Hamming code does not necessarily
obey the bound [3]. Whether a shortened Hamming code satisfies the bound'2'("—k)
depends on the degree of shortening. Because Hamming codés are normally used in
shoftened forms, it is 1mportant to know whether a specific shortened Hamming
code satisfies the bound 2-(n-k). In this paper we investigate the probability
of an undetected error for shortened Hamming codes, particularly the shortened
Hamming codes generated by the polynomials given by (1) or (2)‘. A method for
computing the probability of an undetected error is presented. We show that the

codes generated by the polynomial given by (1) yield better performance than the

corresponding codes generated by the polynomial given by (2).

2. Evaluation of Undetected Error Probability of Shortened Cyclic Hamming Codes

Consider a binary (n,k) linear code C. Let P(C,c) denote the probability
" of an undetected error when code C is used for error detection on a binary

symmetric channel with transition probability e. Let Ai and Bi be the number



of codewords of weight i in C and its dual ¢t respectively. Then P(C,e) can
be expressed in the following two forms, one is in terms of Ai and the other

is in terms of Bi [7,8,9]:

.E Aiei(l-s)n'i : (5)
i=1 '

- 27(m)

P(C,e)

L i n |

) Bi(1-2€) - (1-¢)" . - (6)
i=0 :

From (5) and (6), we see that, to compute the exact error probability of a
1inear code, one needs to know either the weight distribution‘{Ai:Qgign}‘of

the code or the weight distribution {B;:0<i<n} of its dual. Theoretically,

we can compute the weight distribution of an (n,k) linear code by examining its

n-k codewords of its dual. However, for large

Zk codewords or by examing the 2
n, k and n-k, the computation becomes practically impossible. Except for some
short linear codes and a few classes of linear codes [8-11], the weight distri;
butions for most linear codes are sti11 unknown. Consequently, it is very dif-
ficult, if not impossible, to compute the probability ofvan‘undetected error

for a great m%ny codes.

For Hamming codes, a simple formula for enumerating Ai or Bi is known [8-11],
but no general formula is known for shortened Hamming codes. 1In general, for
shortened Hamming codes, n-k<k. Hence it réquires less effort in computing
{Bi: 0<i<n} than in computing {Ai: 0<i<n}. The weight distribution of the‘dual
of a shortened Hamming code can be computed by generating a11»]1néar combinations
of a parity-check matrix for moderate values of‘n-k; We call thié the‘direct
method. In the following, more effective methods for computing the weight dis-

tributions of the dual codes of shortened Hamming codes are presented. The

computation is feasible for moderate values of n-k.



For any positive integer m>3, there exists a cyclic Hamming code of length
2™_1 and minimum distance 3. The generator polynomial of the code is a primi-

tive polynomial p(X) of degree m. Let
500 = ] px - )
p(X) = p.X . |
j=o J ‘ ‘

where Pp=P,=1. Thus the code is a (2M-1, 2m-m-1) code with m parity—chéék ”
symbols. Let Com_; denote this Hamming code. The dual code'of Com_;» denoted
C;m_l, is a maximum-length-sequence code [8-11] which consists of the all-zero
codeword and 2"-1 maximum-length-sequences. Each maximum-length-sequence has
weight 2m-1 and cyclicly shifting any maximum-length-sequence generates all
the other maxfmum-]ength-sequences.

A distance-4 Hamming code of length 2M-1 4s simb]y the even weight subcode
of Com_q- It is generated by the polynomial §(X) = (X+1)p(X) [9,11]. We denote
this code by C2m-1,e' The dual code of C2m-1,e is the first-order cyclic
Reed-Muller code of length 2™-1 which a]sb has minimdm weight om-1 [9,11].

For any poéitivé integer n with m<n<2m, let Cn be a shortened (n,n-m) code
-of Com_q- €, s obtained from C,m_y Dy deleting the first‘Zm-l—n information

symbols from each codeword in sz_l [9-11]. ‘Let An and Bn ; be the number

)1
of codewords of weight 1 in Cn and its dual C; respectively. Let B be an element

in the Galois field GF(Zm). The trace of B8, denoted Tr(R), is defined as

follows:

m-1 ,3
r(g) = 3 &2, o (8)
§%0 )

which is either 0 or 1. Let o be a root of p(X) and let

a; = Tr(ai) (9)

h
for Q51<2m—1. Since E(a2 )=0 for O<h<m, it follows from the 1inearity of trace

Tr(+) that, for 0<i<2™-1,



m-1
a h=

, (10)
i+m2 h |

) p;
§=0 3 i+j2
where the suffixes are to be taken modulo 2M.1. It is known [8] that for a

L m = _ . . '
nonnegative integer u less than 27, v = (au?au+1,...,au+2m_2) is a maximum

length-sequence in sz X Since the weight of v = (au’au+l""’au+2m—2) 1s

Zm-l, it is easy to see that

B = B (11)

M1on,i o n,2™ g

For 1<i<2”, let Ni denote the weight of (au’au+1""’au+i-l) which is a
prefix of v. Let N0=0. Then Bn j is equal to the number of occurrences of
integer i in the sets | ,

[ 4 m__
Ny - Nsz 0 <§<2-1-nb, | (12)
and
@lan s Ml < g < 21y (13)
I j-2"+14n ,

For 1nstance,.we chan choose u such that 3,4;=0 for O<i<m-1 and 2 .. ;=1
Now we estimate the order of computation time for finding Nj. Let p be
the number of nonzero coefficients of the generator polynomial. We consider

the following two methods.

Method-1

For small p, we ca ate i i 2™ i
‘p, . can generate R with 0<i<2” by using recurrence formula,

m-1
a .. = A ..
uh j=0 pJaU+1+J-m ’

and obtain N, N. i i i i
j from N1_1 by increasing Ni by one only if a,+7 1s one. Then the
‘comput1ng time is upper bounded by copZm, where <o is a constant. Hereafter

Ci denotes a constant.



Method-11I
If mandp are large, then we can use the following procedure for computing

N We assume that (i) the word length of computer is 2" or greater where

Oih<m<2m'h, and (i1) word operations, "bit-wise Logical-AND" and "bit-wise
Exclusive-OR" are available. For Q5i<2m-h, Tet o
| | T LI | e
Then it follows from (10) that
- m-1 _ :
T =jZO Pidi4j » . o <15)

We first generate (0,0,...,0,1,a , ,a

% LN ), i.e., ap,ap,...,3, 1 by

2 |
um+1°% 4 (m-1)2h-1
using m-1
a =

. Y opia i -
u+i+m j=0 J utit]
‘The computing time is upper bounded by clmeh. Next we compute am’5m+1’°"’

by using (15), the computing time of which is upper bounded by c2p(2m'hbm).

a
m-h ,
2= -1 m-h

From a, with 0<i<2
h

s NosNogsooosNLyoo N can be found sequentially as follows.
1°72 J 2M_q
h. Then Nj+1'can be obtained from Nj“by extracting

Let j be i2 +f; where O<r<2

the (r+1)-th bit of 51. Nj is increased by one if and only if the result of

ﬂthe extraction is nonzero. The computing time is c32m. Thus the total computing

time is at most clpm2h+c2p(2m'h-m)+c32m. For most cases, the first term>is

much smaller than the other terms. .

h+c3<c0p; then the second method is more effective than the first

2!11

If c2p2'
one. For both methods, {Bn,i: Qgi<2m} can be found from (11) to (13) by Cy
computing time. Hence, the total computing time for finding {Bn,i: Q51<2m} for
q different code-lengths is upper bounded as follows:

(1) For the first method,

(cgp + cqa)2” . | (16)



(2) For the second method,
clpm2h + (c2p2'h+c3+c4q)2m . I (17)

Now we combare the above methods with a "direct method" for computing |
{Bn,i: jS<2m} which generates. all linear combinations 6f the rows of(a parity
check matrix of Cn. The computing time for Qenerating a parity check matrix
is upper bounded by‘c5pmn. To generate all linear combﬁnationS‘of'the rows

efficiently, we can use the Gray code in such a way that a new combination is

obtained from precedfng one by adding a row to it [12,13]. If we use word opera-
tions, bit-wise logical-AND and bit-wise Exclusive-OR, then the computing time
is proportional to.n2m/2, where 2 is the word length of computer. We assume

that the set of code lengths n; with 1<j<q for which {Bn_ it O§j<2m} is to be
J? :
found is given beforehand. Note that we don't need this assumption for the

methods described above. If we use word operation "find the weight of a word", |
then the order of the total computing time for finding the distributions

B, ;: 0<i<2™} for 1<j<q can be estimated as
J» T |
‘ , m ‘
C5PMNmax * (C6nmax/jl * c7q)2 : (18)
where

; m e
Mrax = Max{ng,27-1-ns: 1<j<q} . (19)

Since Cy=Ces Cy=Cy and nmax/z is much greater than p, for most cases the f1rst

or second method is more efficient than the direct method, at least if q<nmax/£;

Let Cn o denote the even weight subcode of Cn' In fact, Cn e is a shortened

code of the distance-4 Hamming code C n generated by g(X) = (1+X)p(X). The
2°-1,e ‘

. .. L : .
number of codewords of weight i in the dual code Cn,e of Cn,e’ denoted Bn,i,e? is
Bn,i,e = Bn,i * Bn,n-1' ) : ‘ (20)
For 15<n<215, let C(l) and'C(z) be the even weight shortened codes of

n,e n,e |
Tength ngenerated by §1(X) of (1) and §2(X) of (2) respectively. For

8-



B, (X) = x15+x14+x13 x12+x4+x3+x2+x+1 and pz(X) x15+x14+1 N s with l<i<2!®
are computed by the f1rst method. From these N s, the weight distributions
{B_ . _: O<i<n} of the dual codes of C(l) and C(Z) for 16<n<215 are obtained..

n,i,e’ n,e
" From these weight distributions and (6), the error probabilities, P(Cﬁ}g,e) and
P(C(l),e), are computed and p1otted in Figures 1 and 2 respectively as functions
’of channe1 bit-error-rate ¢ for code 1ength n=2* with 5<2<14 and n—215 1.
From F1gures 1 and 2, we see that if the two d1stance 4 Hamming codes
recommended by CCITT X.25 are shortened too much, the shortened codes do not

obey the bound 2'("'k)

given by (4), i.e., their error-detection performance
becomes poor as e becomes large. Therefore, in order‘to‘maintain the data
reliability, the length of a data packet should not be too short. In Tables 1
and 2, we tabulate some code lengths for which the error probabilities,
P(Cﬁ}g, ) and P(Cgfg,), do not obey the bound 2~ (" k) given by (4). We also
tabu1ate‘the peak values of error probabilities and the va1ues of channe] bit-
error-rate € where the peak values occur. Note that in most cases, peak values
occur for 4/n<e<5/n. For the longer values: n=2* with 8<2<14 for Cglg and with

10<2<14 for C(Zg, no peak is detected within accuracy in computat1on The peak

2)

values of the probab111ty of undetected error for C(l) and C( are p1otted'in

n,e
Figure 3 as functions of code length n. From Tables 1 and 2 and Figures 1-3,
we see that the codes generated by the polynomial §l(X) of (1) give better
performance than the corresponding codes generated by the poiynomia] §Z(X)

of (2).

3. Conclusion

In this paper, we have investigated the error-detection performancé of
shortened Hamming codes, particularly the shortened codes obtained from the
two distance-4 Hamming codes adopted by CCITT recommendation X.25. First two

methods for computing the weight distributions of the dual codes of shortened



| Hamming codes have been presehfed. We have shown that these hethods are 1in
. generdl more effective than the direct methqd. Usfng the weight distributions
of the dﬁa] codes, we have evaluated the probability of undetected error for
the codes obtained from shortening the‘two X.25 distance-4 Hamming codes. We
have shown that shortening does affect the errof-detection pérformance of the
two X.25 codes. If the codes are shortened too much, the shortened codes do
2716,

not obey the bound We have also shown that the codes generated by

§1(X) = X16+X12+X5+1 gjve better performance than the corresponding codes

generated by 3,(X) = x1o+x xs1.

-10-
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Table 1

The maximum values of P(C, o,€) for O<e<1/2

n € P(Ch,es€)
22 1.85x10-1 1.82x10-4
24 1.71x10-1 1.69x10-4
26 1.59x10-1 1.50x10-4
28 1.48x10-1 1.31x10-4
30 1.39x10-1 1.15x10-4
32 1.30x10-1 1.00x10-4
40 1.05x107" 7.83x10-5
50 8.55x10-2 5.12x10-5
64 7.03x10-2 3.18x10-5
128 4,55x10-2 1.70x10-5




Table 2 ,
The maximum values of P(Cp o,€) for 0<e<1/2

n € P(Cp,ese)
22 1.98x10-1 2.10x10-%
24 1.84x10-1 1.94x10-4
26 1.70x10~1 - 1.72x10-%
28 1.58x10-1 1.50x10-4
30 1.46x10! 1.38x10-3.
32 1.36x10~1 1.64x10-4
40 1.08x10~! 1.89x10-4
50 8.63x10-2 1.67x10-4
64 6.73x10-2 1.32x10-4
128 3.47x10-2 5.12x10-5
256 1.93x10-2 2.28x10-5
512 1.19x10-2 1.67x10-5
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Figure 1 Actual values of probability of undetected error for
the_shortened cyclic Hamming code of length n generated
by gq(X) = 1+X5+X12+x16 as a function of channel bit
error rate e. '
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Figure 2 Actual values of probability of undetected error for

the_shortened cyclic Hamming code of length n generated
by gp(X) = 14X+X144x16 as a function of channel bit
error rate e. ‘



THE PEAK VALUES OF THE PROBABILITY OF UNDETECTED ERROR
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Figure 3 The peak values of the probability of undetected error
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for Cn,e and Cn,e'



