752 research outputs found

    CHANGING ROLES IN IS: A ROLE THEORY PERSPECTIVE

    Get PDF
    The recent dramatic and interesting advances in computer technology have significantly altered the roles of both users and developers. Role theory might be applied to more fully understand and more effectively investigate organizational, behavioral, and social issues related to these changes. A framework for categorizing information systems roles is built from a matrix of information system and organizational activities. The information system activity dimension is composed of indirect user, direct user, autonomous developer, traditional developer, and facilitator categories. The organizational activity dimension contains clerical, professional, and managerial categories. The resulting matrix can facilitate descriptive research, model building, and hypothesis testing

    Electroweak Symmetry Breaking in the DSSM

    Full text link
    We study the theoretical and phenomenological consequences of modifying the Kahler potential of the MSSM two Higgs doublet sector. Such modifications naturally arise when the Higgs sector mixes with a quasi-hidden conformal sector, as in some F-theory GUT models. In the Delta-deformed Supersymmetric Standard Model (DSSM), the Higgs fields are operators with non-trivial scaling dimension 1 < Delta < 2. The Kahler metric is singular at the origin of field space due to the presence of quasi-hidden sector states which get their mass from the Higgs vevs. The presence of these extra states leads to the fact that even as Delta approaches 1, the DSSM does not reduce to the MSSM. In particular, the Higgs can naturally be heavier than the W- and Z-bosons. Perturbative gauge coupling unification, a large top quark Yukawa, and consistency with precision electroweak can all be maintained for Delta close to unity. Moreover, such values of Delta can naturally be obtained in string-motivated constructions. The quasi-hidden sector generically contains states charged under SU(5)_GUT as well as gauge singlets, leading to a rich, albeit model-dependent, collider phenomenology.Comment: v3: 40 pages, 3 figures, references added, typos correcte

    Toward a descriptive model of solar particles in the heliosphere

    Get PDF
    During a workshop on the interplanetary charged particle environment held in 1987, a descriptive model of solar particles in the heliosphere was assembled. This model includes the fluence, composition, energy spectra, and spatial and temporal variations of solar particles both within and beyong 1 AU. The ability to predict solar particle fluences was also discussed. Suggestions for specific studies designed to improve the basic model were also made

    Linear Probability Models of the Demand for Attributes with an Empirical Application to Estimating the Preferences of Legislators

    Get PDF
    This paper formulates and estimates a rigorously-justified linear probability model of binary choices over alternatives characterized by unobserved attributes. The model is applied to estimate preferences of congressmen as expressed in their votes on bills. The effective dimension of the attribute space characterizing votes is larger than what has been estimated in recent influential studies of congressional voting by Poole and Rosenthal. Congressmen vote on more than ideology. Issue-specific attributes are an important determinant of congressional" voting patterns. The estimated dimension is too large for the median voter model to describe congressional voting

    Non-simply-laced Lie algebras via F theory strings

    Get PDF
    In order to describe the appearance in F theory of the non--simply--laced Lie algebras, we use the representation of symmetry enhancements by means of string junctions. After an introduction to the techniques used to describe symmetry enhancement, that is algebraic geometry, BPS states analysis and string junctions, we concentrate on the latter. We give an explicit description of the folding of D_{2n} to B_n of the folding of E_6 to F_4 and that of D_4 to G_2 in terms of junctions and Jordan strings. We also discuss the case of C_n, but we are unable in this case to provide a string interpretation.Comment: 24 pages, 3 figure

    Multiwavelength star formation indicators: Observations

    Get PDF
    We present a compilation of multiwavelength data on different star formation indicators for a sample of nearby star forming galaxies. Here we discuss the observations, reductions and measurements of ultraviolet images obtained with STIS, on board the Hubble Space Telescope, ground-based Halpha, and VLA 8.46 GHz radio images. These observations are complemented with infrared fluxes, as well as large aperture optical radio and ultraviolet data from the literature. This database will be used in a forthcoming paper to compare star formation rates at different wavebands. We also present spectral energy distributions (SEDs) for those galaxies with at least one far-infrared measurements from ISO, longward of 100 um. These SEDs are divided in two groups, those which are dominated by the far-infrared emission, and those where the contribution from the far-infrared and optical emission is comparable. These SEDs are useful tools to study the properties of high redshift galaxies.Comment: 39 pages, 17 jpeg figures, 1 eps figure, To appear in ApJS May 200

    On hypercharge flux and exotics in F-theory GUTs

    Get PDF
    We study SU(5) Grand Unified Theories within a local framework in F-theory with multiple extra U(1) symmetries arising from a small monodromy group. The use of hypercharge flux for doublet-triplet splitting implies massless exotics in the spectrum that are protected from obtaining a mass by the U(1) symmetries. We find that lifting the exotics by giving vacuum expectation values to some GUT singlets spontaneously breaks all the U(1) symmetries which implies that proton decay operators are induced. If we impose an additional R-parity symmetry by hand we find all the exotics can be lifted while proton decay operators are still forbidden. These models can retain the gauge coupling unification accuracy of the MSSM at 1-loop. For models where the generations are distributed across multiple curves we also present a motivation for the quark-lepton mass splittings at the GUT scale based on a Froggatt-Nielsen approach to flavour.Comment: 38 pages; v2: emphasised possibility of avoiding exotics in models without a global E8 structure, added ref, journal versio

    Quantum W-symmetry in AdS_3

    Full text link
    It has recently been argued that, classically, massless higher spin theories in AdS_3 have an enlarged W_N-symmetry as the algebra of asymptotic isometries. In this note we provide evidence that this symmetry is realised (perturbatively) in the quantum theory. We perform a one loop computation of the fluctuations for a massless spin ss field around a thermal AdS_3 background. The resulting determinants are evaluated using the heat kernel techniques of arXiv:0911.5085. The answer factorises holomorphically, and the contributions from the various spin ss fields organise themselves into vacuum characters of the W_N symmetry. For the case of the hs(1,1) theory consisting of an infinite tower of massless higher spin particles, the resulting answer can be simply expressed in terms of (two copies of) the MacMahon function.Comment: 23 pages; v2: References adde
    corecore