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Abstract An infinite-dimensional irreducible representation of su(2, 2) is explic- 4

itly constructed in terms of ladder operators for the Jacobi polynomials J (α,β)n (x) 5

and the Wigner dj -matrices where the integer and half-integer spins j := n+ (α + 6

β)/2 are considered together. The 15 generators of this irreducible representation 7

are realized in terms of zero or first order differential operators and the algebraic 8

and analytical structure of operators of physical interest discussed. 9
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1 Introduction 14

The classification of the functions that can be defined “special,” where “special” 15

means something more than “useful,” is an open problem [1]. 16
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The actual main line of work for a possible unified theory of special functions 17

is the Askey scheme that is based on the analytical theory of linear differential 18

equations [2–4]. 19

A possible scheme, different from the Askey one, seems to emerge in these last 20

years by means of a generalization of the classical special functions, principally 21

related to the introduction of d-orthogonal polynomials by means of difference 22

equations, q-polynomials, and exceptional polynomials [5–15]. 23

We follow here a point of view closely related to a field of mathematics seemingly 24

quite far from special functions: Lie algebras. It is an idea first introduced by 25

Wigner [16] and Talman [17] and later developed mainly by Miller [18] and 26

Vilenkin and Klimyk [19–21]. 27

However, our approach starts from well-established concepts, the “old style” 28

orthogonal polynomials and looks for possible connections with the “old style” Lie 29

group theory. Thus in this paper, as Jacobi polynomials have three parameters we 30

simply attempt to relate them with a Lie algebra of rank three. 31

While other researches are focused on the general relations between special 32

functions and Lie algebras we consider a further step connecting special functions 33

and irreducible representations (IR) of Lie algebras. This restriction of the Lie 34

counterpart that has quite more properties of the abstract algebra gives a lot of 35

additional information on the special functions [22, 23]. 36

Starting from the seminal work by Truesdell [24], where a sub-class of special 37

functions was defined by means of a set of formal properties, we propose indeed 38

a possible definition of a fundamental sub-class of special functions that we call 39

“algebraic special functions" (ASF). 40

These ASF are related to the hypergeometric functions but they are constructed 41

from the following algebraic assumptions: 42

1. A set of differential recurrence relations exists on these ASF that can be 43

associated with a set of operators that span a Lie algebra. 44

2. These ASF support a characteristic IR of this algebra. 45

3. A vector space can be constructed on these ASF where the ladder operators have 46

all the appropriate properties for realizing this IR of the associated Lie algebra. 47

4. The differential equations that define the ASF are related to the diagonal elements 48

of the universal enveloping algebra (UEA) and, in particular, to the Casimir 49

invariants of the whole algebra and subalgebras. 50

From these assumptions, we have that: 51

1. The exponential maps of the algebra define the associated group and allow to 52

obtain from the ASF other different sets of functions. If the transformation is 53

unitary, another algebraically equivalent basis of the space is thus obtained.When 54

the transformations are not unitary, as in the case of coherent states, sets with 55

different properties are found (like overcomplete sets). 56

2. The vector space of the operators acting on the L2-space of functions is 57

isomorphic to the UEA built on the algebra. 58
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The starting point of our work has been the paradigmatic example of Hermite 59

functions that are a basis on the Hilbert space of the square integrable functions 60

defined on the configuration space R. As it is well known from the algebraic discus- 61

sion of the harmonic oscillator, besides the continuous basis {|x〉}x∈R determined by 62

the configuration space, a discrete basis {|n〉}n∈N—related to the Weyl–Heisenberg 63

algebra h(1)—can be introduced such that Hermite functions are the transition 64

matrix elements from one basis to the other. 65

In previous papers we have presented the direct connection between some special 66

functions and specific IRs of Lie algebras in cases where the Lie structure was 67

smaller [25–28]. 68

In this paper we discuss in detail the symmetries of the Jacobi functions intro- 69

duced in [29]. The fact that a su(2, 2) symmetry exists inside the hypergeometric 70

functions 2F1 [30, 31] is, of course, the starting point of our discussion. 71

This is a further confirmation of the line introduced in [25–27] in terms of the 72

Jacobi polynomials that satisfy the required conditions 1–4 and thus deserves an 73

additional analysis to that presented in [29]. As shown there, Jacobi polynomials 74

indeed can be associated with well-defined “algebraic Jacobi functions” (AJF) that 75

satisfy the preceding assumptions. 76

The AJF support an IR of su(2, 2) (a real form of A3) a Lie algebra of rank 77

3 related to the three parameters, {n, α, β}, of the Jacobi polynomials J (α,β)n (x) 78

and, alternatively, to the three parameters {j,m, q} of the AJF. These two triplets of 79

parameters are indeed belonging to the Cartan subalgebra of su(2, 2). 80

The procedure consists in starting from well-known orthogonality conditions of 81

the Jacobi polynomials and defines the orthonormal AJF. The recurrence relations of 82

the Jacobi polynomials are then rewritten by means of differential operators acting 83

on the AJF as ladder operators, whose explicit action remembers the operators J± 84

of the su(2) representation. In this way we obtain twelve non-diagonal operators 85

that together with three Cartan (diagonal) operators close the Lie algebra su(2, 2) in 86

a well-defined IR of AJF. All this analysis can also be transferred to the dj -Wigner 87

matrices [32]. 88

From the Lie algebra point of view for both, AJF and Wigner dj–matrices, the 89

relevant algebraic chains are su(2, 2) ⊃ su(2)⊗su(2) ⊃ su(2) to consider together 90

integer and half-integer spin j and su(2, 2) ⊃ su(1, 1) to describe separately bosons 91

and fermions. 92

The paper is organized as follows. Section 2 is devoted to recall the main 93

properties of the AJF relevant for our discussion and their relations with the 94

Wigner dj -matrices. In Sect. 3 we study the symmetries of the AJF that keep 95

invariant the principal parameter j changing only m and/or q. We thus construct 96

the ladder operators that determine a su(2) ⊕ su(2) algebra and allow to build up 97

the irreducible representations defined by the same Casimir invariant of both su(2), 98

i.e., suj (2)⊗ suj (2). In Sect. 4 we construct four new sets of ladder operators that 99

change the three parameters j,m, and q adding to all of them ±1/2. Each of these 100

sets generates a su(1, 1) algebra to which ∞-many IRs of su(1, 1)—supported by 101

the AJF and the dj -matrices—are associated. In Sect. 5 we show that the ladder 102
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operators, obtained in the previous sections, span all together a su(2, 2) algebra 103

and that both AJF and Wigner dj -matrices are a basis of the IR of su(2, 2) (that is 104

characterized by the eigenvalue −3/2 of the quadratic Casimir of su(2, 2)). Finally 105

some conclusions and comments are included. 106

2 Algebraic Jacobi Functions and Their Structure 107

The Jacobi polynomial of degree n ∈ N, J (α,β)n (x), is defined in terms of the 108

hypergeometric functions 2F1 [33–35] by 109

J (α,β)n (x) = (α + 1)n
n! 2F1

[
−n, 1+ α + β + n;α + 1; 1− x

2

]
, (1)

where (a)n := a (a + 1) · · · (a + n− 1) is the Pochhammer symbol. 110

Now we include an x-depending factor related to the integration measure of 111

the Jacobi polynomials and we define—alternatively to {n, α, β}—three other 112

parameters {j,m, q} : 113

j := n+ α + β

2
, m := α + β

2
, q := α − β

2
, 114

such that 115

n = j −m, α = m+ q, β = m− q . 116

In order to obtain an algebra representation, as we will prove later, we have to 117

impose the following restrictions for {j,m, q}: 118

j ≥ |m|, j ≥ |q|, 2j ∈ N, j −m ∈ N, j − q ∈ N , (2)

thus {j,m, q} are all together integers or half-integers. The conditions (2) rewritten 119

in terms of the original parameters {n, α, β} exhibit that they are all integers 120

satisfying 121

n ∈ N, α, β ∈ Z, α ≥ −n, β ≥ −n, α + β ≥ −n. 122

We thus define 123

Ĵ m,q
j (x) : =

√
Γ (j +m+ 1) Γ (j −m+ 1)
Γ (j + q + 1) Γ (j − q + 1)

×
(
1− x

2

)m+q
2
(
1+ x

2

)m−q
2
J
(m+q,m−q)
j−m (x) . (3)
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Note that usually the Jacobi polynomials J (α,β)n (x) are defined for α > −1 and 124

β > −1 (α, β ∈ R) in such a way that a unique weight function w(x) allows their 125

normalization. However (see also [36, p. 49]) we have to change such restrictions 126

since the normalization inside the functions and their algebraic properties requires 127

Eq. (2). So, in addition to integer or half-integer conditions, we have to restrict to 128

j ≥ |m| in Eq. (3) (Ĵ m,q
j (x) = 0 when |q| > j ∈ N/2). This can be obtained 129

assuming 130

J m,q
j (x) := lim

ε→0
Ĵ m,q
j+ε (x) 131

indeed 132

J m,q
j (x) =

⎧⎨
⎩
Ĵ m,q
j (x) ∀ {j,m, q} verifying all conditions (2)

0 otherwise
. (4)

In conclusion, the basic objects of this paper that we call “algebraic Jacobi 133

functions” (AJF) have the final form (4). 134

The AJF (4) reveal additional symmetries hidden inside the Jacobi polynomials. 135

Indeed we have 136

J m,q
j (x) = J q,m

j (x),

J m,q
j (x) = (−1)j−m J m,−q

j (−x),
J m,q
j (x) = (−1)j−q J −m,q

j (−x),
J m,q
j (x) = (−1)m+q J −m,−q

j (x) .

(5)

The proof of these properties is straightforward. The first one can be proved 137

taking into account the following property of the Jacobi polynomials for integer 138

coefficients (n, α, β) [36]: 139

J
α,β
n (x) = (n+ α)! (n+ β)!

n! (n+ α + β)!
(
x + 1
2

)−β
J
α,−β
n+β (x) , 140

while the second relation can be derived from the well-known symmetry of the 141

Jacobi polynomials [33] 142

J (α,β)n (x) = (−1)nJ (β,α)n (−x), (6)

and the last two properties can be proved using the first two ones. 143

The AJF for m and q fixed verify the orthonormality relation 144

ˆ 1

−1
J m,q
j (x) (j + 1/2) J m,q

j ′ (x) dx = δj j ′ (7)
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as well as the completeness relation 145

∞∑
j=sup(|m|,|q|)

J m,q
j (x) (j + 1/2) J m,q

j (y) = δ(x − y). (8)

Both relations are similar to those of the Legendre polynomials [25] and the 146

associated Legendre polynomials [26]: all are orthonormal up to the factor j + 1/2. 147

These relations allow us to state that {J m,q
j (x); m, q fixed}∞j=sup(|m|,|q|) is a basis in 148

the space of square integrable functions defined in E = [−1, 1]. Considering 149

E × Z × Z/2 :=
⋃

m−q∈Z

⋃
q∈Z/2

Em,q , 150

where Em,q is the configuration space E = [−1, 1] with m and q fixed and Z×Z/2 151

is related to the set of pairs (m, q) with m and q both integer or half-integer, then 152

{J m,q
j (x)} is a basis of L2(E,Z,Z/2) [29]. 153

The Jacobi equation 154

E(α,β)n J (α,β)n (x) = 0 , 155

where 156

E(α,β)n ≡ (1− x2)
d2

dx2
− ((α + β + 2)x + (α − β))

d

dx
+ n(n+ α + β + 1) , 157

rewritten in terms of these new functions J m,q
j (x) and of the new parameters 158

{j,m, q} becomes 159

Em,qj J m,q
j (x) = 0 , (9)

with 160

Em,qj ≡ −
(
1− x2

) d2

dx2
+ 2 x

d

dx
+ 2 m q x +m2 + q2

1− x2
− j (j + 1) , (10)

where the symmetry under the interchange between m and q is evident. 161

It is worth noticing that the AJFs (4), with the substitution x = cosβ with 0 ≤ 162

β ≤ π , are essentially the Wigner dj rotation matrices [32, 36] 163

dj (β)mq =
√
(j +m)!(j −m)!
(j + q)!(j − q)!

(
sin

β

2

)q−m(
cos

β

2

)m+q
J
(m−q,m+q)
j−m (cosβ) 164

that verify the conditions (2). The explicit relation between them is 165

dj (β)mq = J m,−q
j (cosβ). (11)
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Equation (5) are equivalent to the well-known relations among the dj (β)mq , for 166

instance, 167

dj (β)
q
m = (−1)q−m dj (β)mq . 168

The starting point for finding the algebra representation of the AJF is now the 169

construction of the rising/lowering differential applications [18] that change the 170

labels {j,m, q} of the AJF by 0 or 1/2. The fundamental limitation of the analytical 171

approach [16–21] is that the indices are considered as parameters that, in iterated 172

applications, must be introduced by hand. This problem has been solved in [25] 173

where a consistent vector space framework was introduced to allow the iterated use 174

of recurrence formulas by means of operators of which the parameters involved are 175

eigenvalues. 176

Indeed—in order to realize the needed operator structure on the set {J m,q
j (x)}— 177

we introduce not only the operators X and Dx of the configuration space : 178

X f (x) = x f (x), Dx f (x) = f ′(x), 179

but also three other operators J ,M , andQ such that 180

(J, M, Q) : J m,q
j (x) → (j, m, q)J m,q

j (x), (12)

that are diagonal on the AJF and, thus, belong—in the algebraic scheme—to the 181

Cartan subalgebra. 182

3 Algebra Representations for Δj = 0 183

We start from the differential–difference applications verified by the Jacobi func- 184

tions (a complete list of which can be found in Refs. [33–35]). The procedure is 185

laborious, so that, we only sketch the simplest case with Δj = 0, related to su(2) 186

and well known for the dj in terms of the angle [37]. 187

Let us start from the operators that change the values of m only. The relations 188

[33] 189

d
dx
J
(α,β)
n (x) = 1

2 (n+ α + β + 1) J (α+1,β+1)
n−1 (x) ,

d
dx

[
(1− x)α(1+ x)βJ

(α,β)
n (x)

]
=−2(n+ 1)(1− x)α−1(1+ x)β−1J (α−1,β−1)

n+1 (x)

190

allow us to define the operators 191

A± := ±
√
1−X2Dx + 1√

1−X2
(XM +Q), (13)
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that act on the algebraic Jacobi functions J m,q
j (x) as 192

A± J m,q
j (x) = √

(j ∓m) (j ±m+ 1) J m±1, q
j (x). (14)

The operators (13) are a generalization forQ �= 0 of the operators J± introduced 193

in [26] for the associated Legendre functions related to the AJF with q = 0. 194

Indeed Eq. (14) that are independent from q coincide with Eqs. (2.11) and (2.12) 195

of Ref. [26]. 196

Defining now A3 := M and taking into account the action of the operators A± 197

and A3 on the AJFs, Eqs. (14) and (12), it is easy to check that A± and A3 close a 198

su(2) algebra that commutes with J andQ, denoted in the following by suA(2): 199

[A3, A±] = ±A± [A+, A−] = 2A3. 200

Thus, the AJFs {J m,q
j (x)}, with j and q fixed such that 2j ∈ N, j − m ∈ N 201

and −j ≤ m ≤ j , support the (2j + 1)-dimensional IR of the Lie algebra suA(2) 202

independent from the value of q. 203

Similarly to [26], starting from the differential realization (13) of the A± 204

operators, the Jacobi differential equation (9) is shown to be equivalent to the 205

Casimir equation of suA(2) 206

[CA − J (J + 1)] J m,q
j (x) ≡

[
A2
3 + 1

2
{A+, A−} − J (J + 1)

]
J m,q
j (x) = 0 . 207

Indeed, this equation reproduces the operatorial form of (9), i.e., it gives 208

EM,QJ ≡ −(1−X2)D2
x+2XDx+ 1

1−X2 (2XMQ+M2+Q2)−J (J+1) . (15)

On the other hand, we can make use of the factorization method [38–40], relating 209

second order differential equations to product of first order ladder operators in such 210

a way that the application of the first operator modifies the values of the parameters 211

of the second one. Taking into account this fact, iterated application of (13) gives 212

the two equations 213

[A+A− − (J +M) (J −M + 1)] J m,q
j (x) = 0 ,

[A−A+ − (J −M) (J +M + 1)] J m,q
j (x) = 0 ,

(16)

that reproduce again the operator form of the Jacobi equation (9). These are 214

particular cases of a general property: the defining Jacobi equation can be recovered 215

applying to J m,q
j the Casimir operator of any involved algebra and subalgebra as 216

well as any diagonal product of ladder operators. 217

Now, using the symmetry under the interchange of the labels m and q of the 218

AJF (see first relation of (5)), we construct the algebra of operators that changes q 219
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leaving j and m unchanged. From A± two new operators B± are thus defined 220

B± := ±
√
1−X2Dx + 1√

1−X2
(XQ+M) , (17)

and their action on the AJF is 221

B± J m,q
j (x) = √

(j ∓ q) (j ± q + 1) J m,q±1
l (x). (18)

Obviously also the operators B± and B3 := Q close a su(2) algebra we denote 222

suB(2) 223

[B3, B±] = ±B± [B+, B−] = 2B3, 224

and the AJFs {J m,q
j (x)}, with j andm fixed such that 2j ∈ N, j −q ∈ N and −j ≤ 225

q ≤ j , close the (2j + 1)-dimensional IR of the Lie algebra su(2)B independent 226

from the value of m. 227

Again we can recover the Jacobi equation (9) from the Casimir, CB , of suB(2) 228

[CB − J (J + 1)]J m,q
j (x) =

[
B2
3 + 1

2
{B+, B−} − J (J + 1)

]
J m,q
j (x) = 0 . 229

A more complex algebraic scheme appears in common applications of the 230

operators A± and B±. As the operators {A±, A3} commute with {B±, B3}, the 231

algebraic structure is the direct sum of the two Lie algebras 232

suA(2)⊕ suB(2). 233

A new symmetry of the AJFs emerges in the space of J m,q
j (x) when only j is fixed. 234

Both for {j,m, q}, integer or half-integer (see Eqs. (14), (18) and (12)) we have the 235

IR of the algebra su(2)⊕ su(2) 236

suj (2)⊕ suj (2) . 237

So that the AJFs {J m,q
j (x)} for fixed j and −j ≤ m ≤ j , −j ≤ q ≤ j determine 238

the IR with CA = CB = j (j + 1). From (13) and (17), taking into account that 239

always the operators M and Q have been written at the right of X and Dx , it can 240

be shown that A†
± = A∓, B†

± = B∓ and the representation would be unitary 241

with a suitable inner product. In Fig. 1 the action of the operators A±, B± on the 242

parameters {j,m, q} that label the AJFs corresponds to the plane Δj = 0. 243

In conclusion, {J m,q
j (x)} with j fixed is the basis of an IR of su(2) ⊕ su(2) of 244

dimension (2j + 1)2 symmetrical under the interchange of A with B. 245
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Fig. 1 Root diagram of su(2, 2). The coordinates displayed on the planes correspond to the pairs
{m, q}, while the parameterΔj is represented in the vertical axis. The Cartan elements at the origin
are not included

4 Other Ladder Operators Acting on AJF and su(1, 1) 246

Representations 247

As we mentioned before there are many differential–difference relations between 248

the Jacobi polynomials for different values of the parameters [33, 34]. Starting 249

from them we construct a su(2, 2) representation supported by the AJF. The Lie 250

algebra su(2, 2) has fifteen infinitesimal generators, where three of them are Cartan 251

generators (for instance, J,M , and Q). As the four generators that commute with 252

J (i.e., A± and B±) have been introduced in the preceding paragraph, we have to 253

construct eight non-diagonal operators more. They are 254

C± := ± (1+X)√1−X√
2

Dx − 1√
2(1−X)

(
X (J + 1

2 ± 1
2 )− (J + 1

2 ± 1
2 +M +Q)

)
,

D± := ∓ (1−X)√1+X√
2

Dx + 1√
2 (1+X)

(
X(J + 1

2 ± 1
2 )+ (J + 1

2 ± 1
2 +M −Q)

)
,

E± := ∓ (1−X)√1+X√
2

Dx + 1√
2 (1+X)

(
X(J + 1

2 ± 1
2 )+ (J + 1

2 ± 1
2 −M +Q)

)
,

F± := ∓ (1+X)√1−X√
2

Dx + 1√
2 (1−X)

(
X(J + 1

2 ± 1
2 )− (J + 1

2 ± 1
2 −M −Q)

)
.

(19)
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All these differential operators act on the space {J m,q
j } for {j,m, q} integer and 255

half-integer such that j ≥ |m|, |q|. The explicit form of their action is 256

C± J m,q
j (x) =

√(
j +m+ 1

2 ± 1
2

) (
j + q + 1

2 ± 1
2

)
J m±1/2, q±1/2
j±1/2 (x),

D± J m,q
j (x) =

√(
j +m+ 1

2 ± 1
2

) (
j − q + 1

2 ± 1
2

)
J m±1/2, q∓1/2
j±1/2 (x)

E± J m,q
j (x) =

√(
j −m+ 1

2 ± 1
2

) (
j + q + 1

2 ± 1
2

)
, J m∓1/2, q±1/2

j±1/2 (x),

F± J m,q
j (x) =

√(
j −m+ 1

2 ± 1
2

) (
j − q + 1

2 ± 1
2

)
J m∓1/2, q∓1/2
j±1/2 (x).

(20)
From (19) or (20) we have 257

C
†
± = C∓, D

†
± = D∓, E

†
± = E∓, F

†
± = F∓, 258

i.e., all these rising/lowering operators could have the hermiticity properties required 259

by the representation to be unitary. The operators (19) change all parameters by 260

±1/2, so that in Fig. 1 they correspond to the planes Δj = ±1/2. In [29] also 261

quadratic forms of operators (19) that change the parameters in (±1, 0) instead of 262

±1/2 have been considered. 263

From Eq. (19) it is easily stated that 264

D±(X,Dx,M,Q) = C±(−X,−Dx,M,−Q),
E±(X,Dx,M,Q) = C±(−X,−Dx,−M,Q),
F±(X,Dx,M,Q) = −C±(X,Dx,−M,−Q).

(21)

Thus, because of the Weyl symmetry of the roots, we limit ourselves to discuss the 265

operators C±. Taking thus into account their action on the Jacobi functions we get 266

[C+, C−] = −2C3, [C3, C±] = ±C± (22)

where 267

C3 := J + 1
2
(M +Q)+ 1

2
. (23)

Hence {C±, C3} close a su(1, 1) algebra we can denote suC(1, 1). 268

As in the cases of the operators A± and B±, we obtain the Jacobi differential 269

equation from the Casimir CC of suC(1, 1), written in terms of (19) and (23), 270

CC J m,q
j (x) ≡

[
C2
3 − 1

2
{C+, C−}

]
J m,q
j (x) = 1

4

[
(m+ q)2 − 1

]
J m,q
j (x). 271
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Indeed 272

[
CC − 1

4
(M +Q)2 + 1

4

]
J m,q
j (x)

≡
[
C2
3 − 1

2 {C+, C−} − 1
4 (M +Q)2 + 1/4

]
J m,q
j (x) = 0

(24)

allows us to recover the Jacobi equation (9). Analogously the same result derives 273

from eqs. 274

[C+ C− − (J +M) (J +Q)] J m,q
j (x) = 0,

[C− C+ − (J + 1+M) (J + 1+Q)] J m,q
j (x) = 0,

(25)

obtained by the factorization method. 275

From (24) we see that since (m + q) = 0,±1,±2,±3, · · · the unitary IRs 276

of su(1, 1) with CC = (m + q)2/4 − 1/4 = −1/4, 0, 3/4, 2, 15/4, · · · are 277

obtained. Hence, the set of AJF supports infinite unitary IRs of the discrete series of 278

suC(1, 1) [41]. 279

Similar results can be found for the other ladder operators D±, E±, F±, up to 280

an eventual multiplicative factor, with the substitutions (21) in all Eqs. (22)–(25). 281

5 The AJF Representation of su(2, 2) 282

To obtain the root system of the simple Lie algebra A3 (that has su(2, 2) as one of 283

its real forms) we have only simply to add to Fig. 1 the three points in the origin 284

corresponding to the elements J,M , andQ of the Cartan subalgebra. 285

The commutators of the generators A±, B±, C±,D±, E±, F±, J,M,Q are 286

[J,A±] = 0, [J,M] = 0, [J, B±] = 0, [J,Q] = 0,

[J,C±] = ±C±
2 , [J,D±] = ±D±

2 , [J,E±] = ±E±
2 , [J, F±] = ±F±

2 ,

[M,B±] = 0, [M,Q] = 0,

[M,C±] = ±C±
2 , [M,D±] = ±D±

2 , [M,E±] = ∓E±
2 , [M,F±] = ∓F±

2 ,

[Q,A±] = 0,

[Q,C±] = ±C±
2 , [Q,D±] = ∓D±

2 , [Q,E±] = ±E±
2 , [Q,F±] = ∓F±

2 ,

[A+, A−] = 2A3, [A3, A±] = ±A±, (A3 = M),
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[B+, B−] = 2B3, [B3, B±] = ±B±, (B3 = Q),

[C+, C−] = −2C3, [C3, C±] = ±C±, (C3 = J + 1
2 (M +Q)+ 1

2 ),

[D+,D−] = −2D3, [D3,D±] = ±D±, (D3 = J + 1
2 (M −Q)+ 1

2 ),

[E+, E−] = −2E3, [E3, E±] = ±E±, (E3 = J + 1
2 (−M +Q)+ 1

2 ),

[F+, F−] = −2F3, [F3, F±] = ±F±, (F3 = J − 1
2 (M +Q)+ 1

2 ),

[A±, B±] = 0, [A±, B∓] = 0,

[A±, C±] = 0, [A±, C∓] = ±E∓, [A±,D±] = 0, [A±,D∓]= ∓ F∓,

[A±, E±] = ±C±, [A±, E∓] = 0, [A±, F±] = D±, [A±, F∓] = 0,

[B±, C±] = 0, [B±, C∓] = ∓D∓, [B±,D±] = ±C±, [B±,D∓] = 0,

[B±, E±] = 0, [B±, E∓] = ∓F∓, [B±, F±] = ±E±, [B±, F∓] = 0,

[C±,D±] = 0, [C±,D∓] = ∓B±, [C±, E±] = 0, [C±, E∓] = ∓A±,

[C±, F±] = 0, [C±, F∓] = 0,

[D±, E±] = 0, [D±, E∓] = 0, [D±, F±] = 0, [D±, F∓] = ∓A±,

[E±, F±] = 0, [E±, F∓] = ∓B±.

The quadratic Casimir of su(2, 2) has the form 287

Csu(2,2) = 1
2 ({A+, A−} + {B+, B−} − {C+, C−} − {D+,D−} − {E+, E−}
−{F+, F−})+ 1

2
(
A2
3 + B2

3 + C2
3 +D2

3 + E2
3 + F 2

3
)

= 1
2 ({A+, A−} + {B+, B−} − {C+, C−} − {D+,D−} − {E+, E−}
−{F+, F−})+ 2J (J + 1)+M2 +Q2 + 1

2 ,

288

that, applied on the {J m,q
j (x)}, gives 289

Csu(2,2) J m,q
j (x) = −3

2
J m,q
j (x) . (26)
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Fig. 2 IR of su(2, 2) supported by the AJF Jm,q
l (x) represented by the black points. The

horizontal planes correspond to IR of suA(2)⊕ suB(2)

The relation (26) shows that the infinite-dimensional IR of su(2, 2) generated by 290

{J m,q
j (x)} contains all j = 0, 1/2, 1, . . . ,. From it and taking into account the 291

differential realization of the operators involved, (12), (13), (17), and (19), we 292

recover again the Jacobi equation (9) that, as in the previous sections, can be 293

obtained also from the Casimir of any subalgebra of su(2, 2) as well as from any 294

diagonal product of ladder operators. 295

In this IR of su(2, 2) the integer and half-integer values of {j,m, q} are put all 296

together (see Fig. 2). The symmetries of the AJF, where integer and half-integer 297

values of {j,m, q} belong to different IRs, have been considered in [29]. 298

6 Resume and Conclusions 299

The Jacobi polynomials and the dj -matrices look to be more general examples of 300

the properties described in [25–29] for special functions. This suggests that the 301

following properties could be assumed for a possible classification of the ASF, a 302

relevant subset of generic special functions: 303

1. ASF are a basis of L2(F), the space of integrable functions defined on an 304

appropriate space F. 305

2. ASF are a basis of an IR of a Lie algebra G. 306

3. All the diagonal elements of the UEA[G] can be written in terms of the 307

fundamental second order differential equation determined by the quadratic 308

Casimir of G. 309

4. All the non-diagonal elements of the UEA[G] can be written as first order 310

differential operators. 311

5. Every basis of L2(F) can be obtained applying an element of the Lie group G to 312

the ASF. 313
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6. Every operator acting on L2(F) belongs to UEA[G]. 314

Returning now to the particular case of the AJF the previous remarks become: 315

1. AJF are a basis of an IR of the Lie algebra su(2, 2). 316

2. All the diagonal elements of the UEA[su(2, 2)] can be obtained from Eq. (9). 317

3. All the non-diagonal elements of the UEA[su(2, 2)] can be written as first order 318

differential operators. 319

4. The set of AJF {J m,q
j (x)} is a basis in L2(E,Z,Z/2), where E = [−1, 1]. 320

5. Every basis of L2(E,Z,Z/2) can be obtained under the action of SU(2, 2) on 321

the set of AJF, i.e., it can be written as {g J m,q
j (x)} where g ∈ SU(2, 2). 322

6. Every operator acting on L2(E,Z,Z/2) belongs to the UEA[su(2, 2)]. 323

As a final point we recall the connection between the IR of SU(2), 324

Dj(α, β, γ )
m′
m = e−iαm′

dj (β)
m′
m e−iγm , 325

where α, β, γ are the Euler angles [37], the Wigner dj -matrices, and the Jacobi 326

polynomials Pm
′−m,m′+m

j−m′ . This implies that all the results of this paper can be 327

extended to {Dj(α, β, γ )m′
m } that have similar properties of the {J m,q

j (x)} and are a 328

basis of the square integrable functions defined in the space {α, β, γ }. 329
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