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1 Introduction

The recent return of interest in F theory, [1], has originated from the suggestion of possible

low energy phenomenological implications, more precisely by the possibility to accommo-

date in this theory a gravity decoupling at the scale of grand-unification together with

low energy effective grand-unified actions which extend the MSSM, [2–14]. While the co-

existence of these conditions is still under scrutiny, we are interested here in one of the

characteristics of F-theory that makes the previous conjectures plausible. We refer to the

symmetry enhancements that can occur in it, which allow for virtually all types of gauge

symmetries, that is all type of gauge Lie algebras (with possible bounds only on their

rank). What is most interesting for the above mentioned phenomenological applications

is in particular the possibility to accommodate theories characterized by the series of ex-

ceptional simply-laced Lie algebras. But in fact all Lie algebras can be realized, also the

non-simple-laced ones.

Independently of its possible phenomenological applications, F theory vacua are char-

acterized by peculiar aspects that distinguish them from other superstring vacua. Generally

speaking F theory vacua are more ‘constrained’ than others. In particular the number of
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7-branes, their type and, eventually, the type of enhanced symmetry is a result of the

dynamics (geometry) rather than put in by hand, as is the case of other compactifications

with branes. The price for it is that, generically, the relevant open strings are mutually

non-perturbative. This is not to say, however, that nothing can be said about, for instance,

the dynamics in 4D, as refs. [2–14] abundantly testify. It is therefore important to analyze

and understand the dynamics of F-theory. A lot has already been done in the past, but

there are still aspects of the theory where the analysis has not been completed. To men-

tion one important problem, we do not know what form the Freed-Witten anomaly takes in

such a non-perturbative context. Even though our research originated from this problem,

in this paper our aim will be more modest: we will concentrate on symmetry enhancement

in F theory and, in particular, on the appearance of non-simply-laced Lie algebras.

The symmetry enhancement in F theory can be analyzed with various (complemen-

tary) techniques: either with algebraic geometric techniques (Tate’s algorithm) [15, 16], or

by studying the BPS strings stretched among 7-branes [19–22], or by means of the (strictly

related) Lie algebra realization via string junctions [23]. Below we will focus on the last

method. Our purpose in this paper is to apply it to the analysis of non-simply-laced Lie

algebras. We will show in particular how to obtain a description of the root system of the

latter by means of F theory string junctions, attached to a system of (in general, mutually

non-perturbative) 7-branes. We stress that our focus will be only the adjoint representa-

tions of the various Lie algebras (therefore we do not discuss matter representations, see

in this regard the comments in section 8).

The paper is organized as follows. We will start in the following section with a short

review of symmetry enhancement in F theory, and continue in section 3 with a review of

the string junction technology needed in the sequel. Then we will begin with the analysis

of the folding of different Lie algebras: in section 4 we will consider the folding of D2n to

Bn, in section 5 the folding of E6 to F4, in section 6 that of D4 to G2. Finally in section 7

we will sketch the method to obtain Cn. Our first purpose throughout is to show that such

foldings can be formulated in terms of junctions, stretching among a given set of (in general)

mutually non-perturbative 7-branes. The next crucial aim is to provide an interpretation of

the physical states in terms of Jordan strings (by undoing the corresponding junctions) so

as to render self-evident the symmetry of the Dynkin diagram responsible for the foldings.

While we are able to do this for all the cases considered above, this turned out to be

impossible for the Cn, for which we were not able to provide a string interpretation.

2 A concise review of symmetry enhancement in F theory

2.1 Geometric perspective

The purpose of this section is a flash review of symmetry enhancement in two typical cases

of F theory compactifications, focusing in particular on the algebraic mechanism responsible

for the appearance of non-simply-laced gauge groups as opposed to simply-laced ones. We

will consider two possible geometrical schemes: either F theory compactified on R1,7 ×K3,

where the K3 is elliptically fibered over a 2-sphere, or F theory compactified down to 4D
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on a CY fourfold X4. X4 is elliptically fibered over a complex threefold B3 and it admits

the (standard) Weierstrass representation, [15, 16]

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (2.1)

where x, y are affine coordinates parametrizing the elliptic fiber and a1, a2, a3, a4, a6 are

locally defined polynomials. In the first scheme mentioned above the latter depend on

a unique coordinate z which spans the Riemann sphere. In the second they will depend

on several local coordinates. In this case the appropriate method to study symmetry

enhancement is Tate’s algorithm. The elliptic fibers degenerate over specific divisors of the

base B3. Let Σ be one such divisor and let σ = 0 be its local defining equation. If the

discriminant ∆ of the curve (2.1) vanishes on it, the corresponding fiber degenerates; if, for

instance, ∆ is divisible by σ and not by σ2, we have at σ = 0 a singularity of Kodaira type

I1, which does not constitute a singularity of the total space of the fibration and does not

give rise to non-abelian enhanced symmetry. In order to come across the latter we need

more severe singularities. The virtue of Tate’s algorithm is that it enables us to classify

all possible singularities of (2.1) in a systematic tree-like way by analyzing the increasing

order of zeros of ∆ and of suitable polynomial combinations of a1, a2, a3, a4, a6. The first

non trivial instance is when the polynomials a1, a2, a3, a4, a6 are such that (2.1) takes, at

leading order near the origin, the form of the following quadratic equation in x, y, σ:

y2 + a1xy + a3,1σy = a2x
2 + a4,1σx + a6,2σ

2 (2.2)

and ∆ has a double zero at σ = 0. In the case the quadratic form of (2.2) is non-singular,

one blows up the origin and resolves the singularity there. The exceptional divisor of such a

resolution is given by the following generically irreducible non-singular quadratic equation:

y2
1 + a1x1y1 + a3,1y1 = a2x

2
1 + a4,1x1 + a6,2 (2.3)

where x1 = x/σ and y1 = y/σ parametrize in a patch the lines through the singular

point and as such, together with σ, they are local coordinates in the neighborhood of the

exceptional divisor, which is placed at σ = 0. This is a singularity of Kodaira type I2,

which gives rise to an enhanced symmetry of the SU(2) type.

Let us continue along the same branch of the algorithm for simplicity: at the next

step, one encounters two possibilities that differentiate between the non-simply laced and

the simply laced alternative for the gauge symmetry.

• Require a3,1, a4,1, a6,2 to be further divisible by σ, so that (2.2) becomes:

y2 + a1xy + a3,2σ
2y = a2x

2 + a4,2σ
2x + a6,3σ

3 (2.4)

Now, by performing the same blow up as before, we end up with two exceptional

divisors represented on each point of the base by the two lines solving the equation

y2
1 + a1x1y1 − a2x

2
1 = 0 (2.5)
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They are not globally defined in general and they will experience monodromy as one

goes along a closed path on the base. This singularity type is named Ins
3 (ns standing

for non-split) and gives rise to unconventional gauge symmetry.

One can go further along this sub-branch of the algorithm just requiring divisibility

by σ of a6,3: this induces an SU(2) singularity at the origin (x1 = y1 = σ = 0)

that survives after the blow up, so that a second blow up is necessary to completely

resolve the singularity, which leads to a further irreducible exceptional divisor, similar

to (2.3), placed at σ = 0 in the coordinate chart (x2 = x1/σ, y2 = y1/σ, σ) This is

the type Ins
4 singularity, which corresponds to the Sp(2) gauge group.

By induction, one easily constructs in this way the series of Cn algebras, the reso-

lution of the corresponding singularities being characterized by n − 1 pairs of non-

split exceptional divisors plus an irreducible one; moreover one has also a tower of

unconventional gauge symmetries for which there are instead n pairs of non-split

exceptional divisors.

• Require a2, a4,1, a6,2 to be further divisible by σ, so that (2.2) becomes:

y2 + a1xy + a3,1σy = a2,1σx2 + a4,2σ
2x + a6,3σ

3 (2.6)

Blowing up in this case leads to a resolution of the singularity by means of two

globally distinct (split) exceptional divisors, described by the equation:

y1(y1 + a1x1 + a3,1) = 0 (2.7)

This singularity type is named Is
3 (s standing for split) and gives rise to the familiar

SU(3) gauge symmetry.

Again one can go on with the algorithm just requiring σ to divide a3,1 and a6,3.

Again this will induce a residual SU(2) singularity at the origin, i.e. the intersection

of the two previously found split exceptional divisors: the blow up of such singularity

will lead as before to an additional irreducible exceptional divisor, like (2.3), placed

at σ = 0 in the coordinate chart (x2, y2, σ). This is the type Is
4 singularity, which

corresponds to the SU(4) gauge group.

By induction, one constructs this way the entire series of An algebras, producing,

out of the resolving procedure, n/2 pairs of split exceptional divisors if n is even and

(n − 1)/2 pairs of split exceptional divisors plus an irreducible one if n is odd.

While the full classification of symmetry enhancements can be found in [16], let us

write here the polynomials whose factorization distinguishes the split case from the non-

split one, also in the other branches of the algorithm, which are relevant for us because

they contain the orthogonal and the exceptional gauge symmetries.

1. For the Kodaira singularity of type IV ⋆ns (corresponding to the gauge group F4),

the relevant polynomial is:

y2
2 + a3,2y2 − a6,4 = 0 (2.8)
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which factorizes globally if we just require a6,4 = 0mod σ, thus generating the IV ⋆s

singularity (namely the E6 gauge group).

2. For the Kodaira singularities of type I⋆ns
2k−3

, k ≥ 2 (corresponding to the gauge groups

SO(4k + 1)), the relevant polynomials are:

y2
k + a3,kyk − a6,2k = 0 (2.9)

which factorize globally if we just require a6,2k = 0mod σ, thus generating the I⋆s
2k−3

singularities (namely SO(4k + 2) gauge groups).

3. For the Kodaira singularities of type I⋆ns
2k−2 (corresponding to the gauge groups

SO(4k + 3), k ≥ 2), the relevant polynomials are:

a2,1x
2
k + a4,k+1xk + a6,2k+1 = 0 (2.10)

for which we cannot change coordinates in order to formulate their factorization as

before in terms of the vanishing mod σ of some polynomial; anyway, if they factor,

the associated singularities become I⋆s
2k−2

, k ≥ 2 (namely SO(4k + 4) gauge groups).

4. Finally, the Kodaira singularity I⋆ns
0 (corresponding to the gauge group G2) contains

a subtlety. The relevant polynomial is:

x3
1 + a2,1x

2
1 + a4,2x1 + a6,3 = 0 (2.11)

which describes a triple of non-split exceptional divisors. Clearly (2.11) can ei-

ther partially or completely split. The former situation is achieved simply requiring

a6,3 = 0mod σ, which leads to the so called type I⋆ss
0 (ss standing for semi-split),

corresponding to SO(7) gauge group (a couple of non-split exceptional divisors and

a split one). The latter is obtained by further requiring the factorization mod σ of

x2
1 + a2,1x1 + a4,2, which leads to three split exceptional divisors, but, as at point 3.,

cannot be formulated in terms of the vanishing mod σ of some polynomial: this is

the case of type I⋆s
0 (namely SO(8) gauge group).

In the above algebraic geometric description, what establishes the connection between

the specific singularity and the enhanced symmetry is the fact that the intersection ma-

trix of the components of each singular fiber (namely the various exceptional divisors we

have found) is observed to take the form of the affine Cartan matrix of the corresponding

non-Abelian Lie algebra. As we saw, this gives rise to the ADE series of Lie algebras

provided that no monodromy acts on the collapsing cycles.1 On the other hand when the

opposite occurs and, in particular, when, going around the singularity, we pick up an outer

automorphism of the Lie algebra, the gauge group gets orbifolded as we shrink the 2-cycles

of the resolution to zero-size, and one ends up with a reduced gauge symmetry. These re-

ductions via outer automorphisms are known, in Lie algebra theory, to be connected to the

1Actually if monodromies are present but they are all given by elements of the Weyl group (inner

automorphisms), they can be undone by a gauge transformation in the fiber and thus we don’t break the

initial simply-laced gauge group.
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symmetry of the relevant Dynkin diagrams and to lead to the non-simply-laced algebras;

precisely, a Z2 orbifold leads from A2n−1 to Cn, from Dn to Bn−1 and from E6 to F4,

while the triality of the D4 Dynkin diagram leads to G2.

2.2 String perspective

In the framework of algebraic geometry, the above is as much as one can say about the

connection between singularity theory and enhancing of gauge symmetry (although some

attempts were made in the past to render it more explicit, [17, 18]). The gauge interpreta-

tion is supported by the duality with heterotic theory, when the latter exists. But, needless

to say, a more direct and physical interpretation is clearly desirable and was indeed put

forward in the early stage of F theory. It was based on the analysis of BPS spectrum of

7-branes. The spectrum of [p, q]-7-branes is formed by

(

p

q

)

-strings. Since, in general, en-

hanced symmetry requires an assemblage of branes with different p, q charges, it is evident

that the strings that enter the game will in general be mutually non-perturbative. The

search for BPS string states was carried out in refs. [19–22] in the first scheme referred to

above, that is when F theory is compactified on R1,7 × K3.

In this case many things simplify. The Weierstrass representation can be written in

the traditional form

y2 = x3 + f(z)x + g(z) (2.12)

where z is the coordinate on the P
1 base of the elliptically fibered K3, and f and g are

polynomials of degree eight and twelve, respectively. As usual the zeroes of the discriminant

∆ = 4f3 + 27g2 identify the locations of 7-branes on the sphere P
1. This compactification

scheme gives rise, via collapsing of 7-branes, to many examples of symmetry enhancements,

but it cannot give rise to non-simply-laced gauge groups, due to the absence of non-trivial

monodromies on R
1,7. The complex axi-dilaton field τ is implicitly defined by the equation

j(τ(z)) = 4(24f)3/∆

where j is the standard modular function, which maps the fundamental region of τ , with

respect to the SL(2, Z) action, to the sphere. Once τ and the sites of 7-branes on the

sphere are known, one can write down the metric on P
1 [35]:

ds2 = Im(τ)|η(τ)|4
∏

i

|z − zi|
−1/6dzdz̄ (2.13)

where η is the Dedekind function. Knowing the metric, one can, at least in principle,

compute the geodesics. But one has to take into account also the string tension, which, for

a

(

p

q

)

string, is

Tp,q =
1

√

Im(τ)
|p − qτ | (2.14)
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It is therefore natural to define the effective length dsp,q = Tp,qds. It measures the mass of

the stretched strings between different branes. The idea is to consider an allowed config-

uration of [p, q] branes, which will eventually collapse, and produce the desired enhanced

symmetry, and analyze all possible strings stretched between them. These strings, before

collapse, will be massive. The states with minimal dsp,q length are recognized as BPS

states and will identify the massless gauge fields.

The determination of all BPS string states is in principle possible; in practice it is

not easy. One reason is that τ(z) is, in general, a function defined only implicitly, so

that only numerical techniques are viable. There are particular values in the moduli space

where τ can be held constant (being fixed points of the monodromy), [36–38]: these are

τ = i∞, i, e
iπ

3 . In such instances the search for BPS states can be effectively carried out,

but the enhanced symmetries realized in this way are only a limited subset. It is clear that

for general τ , things are far more complicated and the control over the BPS states is very

hard to realize. Anyhow, the analysis of the constant τ examples, even though it involved

simple and far from phenomenologically interesting cases, was important to convince people

that our physical intuition of the symmetry enhancement in F theory is plausible.

3 String junctions

In [21], using these examples, the importance of string junctions was stressed (for string

junctions in F theory see [23–29] and also [30–34]). Indeed, as is well-known,

(

p

q

)

strings

may join or split and form string networks. The only condition is that the charges be

conserved at the vertices. String junctions is the generic term to indicate any kind of string

pattern, from elementary string prongs attached to a 7-brane to complicated networks of

strings. String junctions will be basic in the sequel.

Indeed, a third technique to analyze symmetry enhancement in F theory was intro-

duced in [23]. Instead of focusing on BPS states, the idea was to consider the lattice

of string junctions related to a given system of 7-branes and define invariant intersection

numbers (scalar product) on it. Once this is done the game consists in showing that string

junctions of specific composition and length form a realization of the root lattice of a given

Lie algebra.

Before discussing how this technology works in the compactification scheme of CY

fourfolds, a comment is in order to distinguish the latter from the K3 compactification.

For F-theory on K3, the 7-branes are just points in the internal sphere; hence resolving

singularities just amounts to separate some of those points that collapse, ending up with

stacks of parallel 7-branes, possibly mutually non-perturbative. On CY fourfolds, instead,

7-branes are regarded as 4-dimensional divisors of the base space, and having stacks of

parallel 7-branes after resolution is now a highly non-generic situation. In general 7-branes

will intersect in many complicated ways, and, in addition, after the complete resolution

of the singularity placed on codimension 1 in the base, nothing guarantees the absence of

additional singularities on higher codimension loci. However, rather than attempting to

control such global issues, our purpose here is more limited: we will work strictly locally,
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in a coordinate patch whose origin will represent the singularity, thus mimicking (locally)

the situation of K3. We remark in particular that in this way the 7-brane type (see also

below) is well defined via its monodromy around the local singularity.

In the geometry of an elliptically fibered CY fourfold X4, let us consider the neighbor-

hood of a point where a group of collapsed 7-branes sits and the elliptic fiber degenerates.

As we have just explained, we can limit ourselves to a neighborhood represented by the

local coordinates x, y, σ. The singularity is supposed to be located at σ = 0, where σ

represents a coordinate transverse to the bunch of branes. In this sense the geometric

environment is locally similar to the compactification on a K3 surface, with σ replacing the

coordinate z on P
1. The only difference is that σ is only defined locally, while z represents

the full P
1 in the familiar way. But this is sufficient for the construction we have in mind.

For practical reasons we avoid introducing new notation and adopt that of [23]. As

in [21, 23] we will introduce three types of 7-branes, called A,B and C and summa-

rized below:

A = [1, 0] : KA ≡ M−1
1,0 =

(

1 −1

0 1

)

B = [1,−1] : KB ≡ M−1
1,−1 =

(

0 −1

1 2

)

(3.1)

C = [1, 1] : KC ≡ M−1
1,1 =

(

2 −1

1 0

)

(3.2)

A represents the ordinary D7-brane. Every [p, q]-brane is characterized by the monodromy

matrix Mp,q defined by

Mp,q =

(

1 − pq p2

−q2 1 + pq

)

(3.3)

To describe the geometry we will deform the brane configuration, by separating the branes

by a slight amount, so that, afterward, all the branes will lie at different points of the σ

plane near σ = 0. In order to keep track of the SL(2, Z) transformation properties of the

branes and strings we will draw in the σ plane, in the neighborhood of σ = 0, cuts starting

from the branes and going to ‘infinity’, where ‘infinity’ is a conventional point where all

the cuts end. For definiteness we imagine the cuts going upward. As explained in [21, 23],

an

(

r

s

)

string crossing the cut in the anticlockwise direction will appear beyond the cut

as the string M−1
p,q

(

r

s

)

. If we drag the string down the cut through the point where the

brane sits, we will have a U-dual version of the Hanany-Witten effect [39]: a third string

prong will develop, starting from the brane and joining the string in such a way that at

the triple junction the charges are conserved. That is, the finite prong will have charges

(M−1
p,q − 1)

(

r

s

)

.
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The above are the basics about junctions. The authors of [23] were able to show that

junctions generate a lattice. Let us consider a junction J, with endpoints on different

branes and possibly at infinity. Let b denote a brane index. Then we associate to each

brane the charge

Qb(J) = n+ − n− +

nb
∑

k=1

∣

∣

∣

∣

∣

rk pb

sk qb

∣

∣

∣

∣

∣

(3.4)

where n+ is the number of

(

pb

qb

)

prongs departing from the b brane, and n− is the number

of

(

pb

qb

)

prongs ending on the b brane. Moreover nb, a nonnegative integer, is the number

of intersections of J with the cut starting at the b brane and

(

rk

sk

)

are the charges of

the strings belonging to J that cross the cut at the k-th intersection in a counterclockwise

direction. The charge Qb can be shown to be invariant under the cut crossing above.

Of course there is also a charge associated to the point at infinity. It will be called the

asymptotic charge.

Now for a brane with label b and type [pb, qb], the outgoing

(

pb

qb

)

string starting at the

brane and going to infinity will be denoted sb. This is a very simple case of junction whose

charges are Qa(sb) = δa
b . Moreover, given two junctions J1 and J2, their sum is naturally

defined as the junction with charges

Qa(J1 + J2) = Qa(J1) + Qa(J2)

These rules define a lattice in which one can introduce a scalar product as follows: for

an s elementary prong defined above we have

< s, s >= −1, (3.5)

and for a three strings junction J3 we have

< J3,J3 >=

∣

∣

∣

∣

∣

pi pi+1

qi qi+1

∣

∣

∣

∣

∣

(3.6)

where i is an integer mod 3. It is easy to see that this definition is independent of i.

These rules define a (in general degenerate) metric in the junction lattice. For instance if

we have n branes of type A, one brane of type B and one of type C the corresponding

elementary prongs ai (i=1,. . . ,n), b and c departing from them, have the following metric

(which follows from (3.5), (3.6), see [23]):

〈ai,aj〉 = −δij

〈ai,b〉 = −1/2

〈ai, c〉 = 1/2

– 9 –
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〈b,b〉 = −1

〈c, c〉 = −1

〈b, c〉 = 1 (3.7)

Armed with these tools the authors of [23], by simply selecting the junctions of given

length and vanishing asymptotic charge, were able to identify the junctions that correspond

to all the roots of simply-laced Lie algebras. We will recall explicit examples below, but,

especially, our purpose will be to single out the combinations of these roots which are

invariant under the symmetry (if any) of the relevant Dynkin diagram in order to extract the

roots of the corresponding non-simply-laced Lie algebras. In this way we will construct the

root system of the Bn and Cn series, and of F4 and G2, in terms of string junctions. We will

show in addition that all such roots can be given in terms of junctions or in terms of Jordan

strings (that is, string prongs without three or higher order string mergings). Moreover, we

will interpret our results in a physical perspective in terms of branes and their orientifold

images, fractional (involution invariant) branes and string stretching among them.

4 Orthogonal Lie algebras

The Dn = so(2n) (n ≥ 4) algebras are constructed out of n A-branes, one B-brane and

one C-brane. The Bn−1 = so(2n − 1) (n ≥ 4) algebras are, instead, Z2 folding of Dn (the

last two simple roots are identified) and we are going to show how this procedure will be

seen by means of a resolution of type I∗
n−4

Kodaira singularity.

4.1 so(2n) algebras

Let us first review the construction of the Dn algebras, following the procedure of [23].

The so(2n) algebras are constructed with n a-type prongs ai, i = 1, . . . , n, a b prong and

a c prong. So the relevant vector space in this case is R
n+2, spanned by {a1, . . . ,an,b, c}.

The roots are the following:

± (ai − aj) 1 ≤ i < j ≤ n

±(ai + aj − b− c) 1 ≤ i < j ≤ n (4.1)

They are 2n2 − 2n. Counting the n zeroes corresponding to Cartan generators, makes

2n2 − n, that is the dimension of the so(2n) algebra. The meaning of the non-zero roots

is very clear in terms of strings and orientifolds. First of all, as one can see from (4.1),

there is no charge left at infinity by these states (no asymptotic charge). Moreover, they

all have the same length (the squared norm is equal to -2, computed by means of (3.7)),

as it should be for simply-laced algebras. Finally, looking at the coefficients in (4.1), we

note that:

• the root (ai − aj) just corresponds to the standard string stretching from the i-th

A-brane to the j-th one;

• the root (ai+aj−b−c) corresponds to a string departing from the i-th A-brane, going

across the branch cuts of the B-brane and of the C-brane and eventually ending on

the j-th A-brane, but with reversed orientation (so it is also departing from the j-th
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A-brane). In fact the effect of KCKB on a fundamental string is to reverse its sign.

Therefore C and B can be thought of as the constituents of a non-perturbative bound

state, corresponding to the orientifold O7− of the perturbative theory of the D7’s.

The case (ai + ai − b − c) is not included because it corresponds to non-orientable

strings, which would be massive even in the collapsing limit. Therefore (ai+aj−b−c)

junctions realize the expected antisymmetric Chan-Paton factors. On the covering

space of this Z2-orbifold, such twisted states simply lift to strings stretching between

a brane and the mirror image of another brane. This consideration allows us to write:

āi ≡ b + c− ai (4.2)

defined as the asymptotic string departing from the orientifold image of the i-th A-

brane. It has the correct asymptotic charge, the right squared length of a normal

a-prong and vanishing scalar product with {aj}j 6=i, as it is easy to verify. In this way

the root (ai + aj − b − c) becomes (ai − āj), thus representing the familiar string

departing from the i-th brane and ending on the image of the j-th one.

All the roots we have constructed are represented by string-junctions with vanishing asymp-

totic charge and all have the same squared length (-2), as it should be for a simply-laced

Lie Algebra.

Finally, in order to visualize the folding of the so(2n) algebra, let us write here also

its simple roots:

αi = ai − ai+1, i = 1, . . . , n − 1, and αn = an−1 − ān (4.3)

4.2 so(2n − 1) algebras

As already said, these algebras are obtained from the previous ones by identifying the last

two simple roots in (4.3), which are exchanged by the Z2 outer automorphism of the so(2n)

algebra. From the point of view of the 7-branes, we can achieve this by simply identifying

the last A-brane with the fractional one, which lies on the orientifold. So let us set a0 ≡ an

for the corresponding outgoing asymptotic string; the identification will thus impose the

following relation:

2a0 = b + c (4.4)

Hence the relevant vector space for the so(2n-1) algebra is an R
n+1 vector subspace of

R
n+2, defined by (4.4), which by the way is consistent with the fact that the fractional

brane is still a D7. Notice, however, that this prong has now norm equal to 0 and also

vanishing scalar product with any other vector. Thus we have to set:

〈a0,a0〉 = 0

〈a0,ai〉 = 0

〈a0,b〉 = 0

〈a0, c〉 = 0 (4.5)
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Some of the roots of so(2n-1) are represented by the junctions

±(ai − aj) 1 ≤ i < j ≤ n − 1

±(ai − āj) 1 ≤ i < j ≤ n − 1 (4.6)

whose physical meaning is identical to the one described in the previous section, since

they just correspond to the (n-1)(2n-4) roots of the maximal so(2n-2) subalgebra. The

remaining roots are:

± (ai − a0) ≈ ±(ai − ā0) i = 1, . . . n − 1 (4.7)

These correspond instead to strings stretching from the A-branes to the fractional brane

sitting on top of the orientifold (both the orientations are possible). The equivalence is due

to the invariance of the fractional brane under the orientifold involution, which means, as

stated in (4.4), a0 = ā0 for the corresponding asymptotic string. A further comment is in

order: due to the vanishing norm of the fractional brane, these states have now squared

length equal to -1! It is clear then that they correspond to the short roots of the non-simply

laced algebra Bn−1. Altogether these are (n − 1)(n − 2) + (n − 1)(n − 2) + 2(n − 1) =

(n−1)(2n−2) non-zero roots. They fill up the root set of so(2n-1). Counting n−1 zeroes

corresponding to the Cartan subalgebra this yields the dimension of so(2n-1).

The simple roots of so(2n-1) are:

αi = ai − ai+1, i = 1, . . . , n − 2, and αn−1 = an−1 − a0 (4.8)

Therefore the roots αi, i = 1, . . . , n − 2 are long, while αn−1 is short. All in all, in this

Lie Algebra there are 2n-2 short roots, while the remaining ones are long, and all are still

represented by string junctions with vanishing charge at infinity.

Actually we can say more. The physical meaning of the roots (4.6) and (4.7) will tell

us their behavior under the breaking of the odd orthogonal gauge algebra to the maximal

subalgebra that can be realized perturbatively. Suppose we resolve the non-split I∗
n−4

Kodaira singularity, the one relevant for the Bn−1 algebra, in two groups of 7-branes, one

made of n-1 A-branes on top of each other, and the other made by the fractional A-brane

on top of the CB orientifold. In this way, the manifest perturbative subalgebra of so(2n-1)

will be su(n − 1) × u(1). Hence, for the breaking

so(2n − 1) −→ su(n − 1) × u(1) (4.9)

the branching rule for the adjoint representation is:2

(n − 1)(2n − 1) −→ (n − 1)2 − 1 + 1 + 2 ×
(n − 1)(n − 2)

2
+ 2 × (n − 1) (4.10)

that is, the adjoint of so(2n-1) goes into the adjoint plus two copies of the 2-antisymmetric

plus two copies of the fundamental of su(n − 1) × u(1).

It is very easy now to match this representation content with the roots (4.6), (4.7).

2We will not keep track of the u(1) charges, as they cannot be detected by an analysis like ours based

on string junctions.
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• The first set of roots in (4.6) (and the n − 1 zeroes corresponding to the Cartan

generators) fill up the weights of the (n − 1)2-dimensional adjoint representation of

su(n − 1) × u(1), i.e. they correspond to the gauge vectors of the manifest pertur-

bative subalgebra.

• The second set of roots in (4.6) fill two copies of the 2-antisymmetric representa-

tion3 of su(n − 1), and are therefore responsible of the enhancing of the perturbative

subalgebra su(n − 1) × u(1) to the maximal subalgebra so(2n-2).

• The roots in (4.7) fill up two copies of the fundamental4 of su(n − 1), since, as said,

they are just the strings stretched between the fractional brane and one of the n-1

A-branes in the stack.

5 E6 and F4

We want now to make an analogous construction that leads from a 7-brane model for E6

to the one corresponding to F4, since the latter algebra can be viewed as the folding of

the former one under the Z2 automorphism group of its Dynkin diagram. Let us start by

reviewing the procedure for E6, following again [23].

5.1 The E6 algebra

E6 is constructed out of 5 A-branes, one B-brane and 2 C-branes. Hence the string

realization of the E6 algebra is based on 5 prongs a1, . . . ,a5, one prong b and two prongs

c1, c2. The non-zero roots are identified with the junctions

± (ai − aj), 1 ≤ i < j ≤ 5

±(ai − aj − b − ck), 1 ≤ i < j ≤ 5, k = 1, 2 (5.1)

which are 20+40=60, together with the junctions

±

(

5
∑

k=1

ak − ai − 2b − c1 − c2

)

, 1 ≤ i ≤ 5 (5.2)

and

± (c1 − c2) (5.3)

Altogether they make 72 roots (to be added to the 6 zero eigenvalues due to the Car-

tan generators). These are all the junctions with square length -2 and vanishing asymp-

totic charges.

3More precisely, the 2-antisymmetric and the (n-2)-antisymmetric, since their string representatives have

opposite orientations.
4More precisely, the fundamental and the (n-1)-antisymmetric (antifundamental), since their string

representatives have opposite orientations.
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In order to visualize the folding of the E6 algebra, let us write here its simple roots:

α1 = a1 − a2, α2 = a2 − a3, α3 = a3 − a4,

α4 = a4 − ā1
5, α5 = c1 − c2, α6 = a4 − a5 (5.4)

An so(10) subalgebra with simple roots {αi}i6=5 is manifest.

Let us make a comment concerning the string interpretation of this construction. We

start by defining the images of the a-prongs as follows:

āI
i ≡ b + cI − ai 1 ≤ i ≤ 5 and I = 1, 2 (5.5)

according to which each of the two C-branes is taken to form an orientifold with the B-

brane. Using the same scalar product (3.7) in R
8 generated by {a1, . . . ,a5,b, c1, c2}, with

the addition of 〈cI , cJ 〉 = −δij, one can see that the definition (5.5) is still compatible with

the metric behavior of the a-prongs of (4.2). The second set of junctions in (5.1) can be

rewritten in the by now familiar way

± (ai − āI
j) 1 ≤ i < j ≤ 5, I = 1, 2 (5.6)

5.2 The F4 algebra

F4 is algebraically generated by folding the E6 Dynkin diagram under its Z2 symmetry

group. Acting on the simple roots in (5.4), this symmetry maps α1 → α5, α2 → α4,

while leaving α3 and α6 unchanged. In terms of F-strings, this is generated by the

prong correspondences

a1 −→ a3 + a4 + a5 − b− c2

a2 −→ a3 + a4 + a5 − b− c1

c1 −→ a3 + a4 + a5 − b− a2

c2 −→ a3 + a4 + a5 − b− a1 (5.7)

while a3,a4,a5,b remain unchanged.

The E6 roots invariant under these transformations are

± (a3 − a4), ±(a1 + a3 − b− c2),

±(a4 − a5), ±(a1 + a4 − b− c2),

±(a3 − a5), ±(a1 + a5 − b− c2),

±(a1 + a2 + a4 + a5 − 2b − c1 − c2), ±(a2 + a3 − b− c1),

±(a1 + a2 + a3 + a5 − 2b − c1 − c2), ±(a2 + a4 − b− c1),

±(a1 + a2 + a3 + a4 − 2b − c1 − c2), ±(a2 + a5 − b− c1) (5.8)

In addition the linear combinations of E6 roots which are invariant are

± (a1 − a3 + a4 + a5 − b− c2), ±(a2 − a3 + a4 + a5 − b− c1),

±(a1 + a3 − a4 + a5 − b− c2), ±(a2 + a3 − a4 + a5 − b− c1),
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±(a1 + a3 + a4 − a5 − b− c2), ±(a2 + a3 + a4 − a5 − b− c1),

±(a1 − a2 + c1 − c2), ±(a1 + a2 + 2a3 − 2b − c1 − c2),

±(a1 + a2 + 2a4 − 2b − c1 − c2),

±(a1 + a2 + 2a5 − 2b − c1 − c2),

±(2a1 + a2 + a3 + a4 + a5 − 3b − c1 − 2 c2),

±(a1 + 2a2 + a3 + a4 + a5 − 3b − 2 c1 − c2). (5.9)

All in all we have 24 short + 24 long = 48 roots, still represented by string junctions with

vanishing charge at infinity. Adding the four zeros corresponding to the Cartan generators

yields a total of 52, the dimension of F4.

It is not hard to single out a set of simple roots for the set (5.8), (5.9):

α1 = a1 − a2 + c1 − c2, α2 = a2 − a3 + a4 − ā1
5,

α3 = a3 − a4, α4 = a4 − a5. (5.10)

The first two are long (squared length -4), the last two short (squared length -2). Using the

scalar product (3.7) with one more c-prong (with 〈cI , cJ 〉 = −δij) and the definition (5.5),

we get for the nonvanishing Cartan matrix elements

〈α1, α1〉 = 〈α2, α2〉 = −4, 〈α3, α3〉 = 〈α4, α4〉 = −2,

〈α1, α2〉 = 〈α2, α3〉 = 2, 〈α3, α4〉 = 1 (5.11)

By comparing with the simple roots of E6, we see that α3 and α6 become the short simple

roots of F4, since they are left unchanged by the Z2 symmetry; as long simple roots of F4,

instead, we take the two invariant combinations out of the remaining four simple roots of

E6 that are pairwise exchanged by Z2: these are clearly α1 + α5 and α2 + α4.

With the labeling (5.10) the roots (5.8) and (5.9) coincide with the roots of [40], vol.

II, appendixF, ch.8. For instance, for the very last one in (5.9), one gets

a1 + 2a2 + a3 + a4 + a5 − 3b − 2 c1 − c2 = 2α1 + 4α2 + 3α3 + α4

To summarize, in order to write down the string-junctions representing the roots of

the non-simply laced algebra just constructed, we have proceeded in two steps:

• we have singled out the roots of the parent E6 algebra that are not touched by the

Z2 symmetry, which, therefore, remain with the same square length: these are the

analogs of the roots (4.6) of the manifest so(2n-2) subalgebra of so(2n-1);

• to find the remaining roots, which therefore have double the length of the previous

ones, we have built up singlets under the Z2 symmetry, by taking linear combinations

of the vectors.

What we have said so far simply means that the roots of the Lie algebra F4 can be

constructed in terms of junctions, i.e. the folding of E6 leads again to string junctions. It

remains for us to understand the origin of the Z2 symmetry of E6. To this end we have
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Figure 1. The Jordan strings representing the junctions a2 and a3 + a4 + a5 − b − c1

to unravel the meaning of the transformations (5.7). We will resolve the E6 singularity

(IV ∗s, in Kodaira classification) by arranging our 8 branes, for instance, as follows: we

take a group formed by BA3A4A5 at the center, then A1A2 on the left and C1C2 on the

right, with the relevant cuts going upward. Looking at the first of (5.7) the a1 on the

left is just the usual elementary prong going downward to infinity. The junction on the

right (a3 + a4 + a5 − b− c2) is also going to infinity and its asymptotic is the same as a1.

This junction can be easily undone and represented by a Jordan string that ends on C2

coming from the left, after having crossed the cuts of B,A5, A4 and A3. This is a Jordan

string that, after the crossings, has the charge of a fundamental string. Indeed one can

easily verify that KBK3
A

(

−1

−1

)

=

(

1

0

)

. In other words, looking from the left through the

screen formed by BA3A4A5 at a string ending on C2, one sees a fundamental string. A

similar construction holds for the second transformation in (5.7) with A1, C2 exchanged

with A2, C1 (see figure 1).

Let us consider next the third transformation in (5.7). In this case the c1 prong

on the left is the usual elementary prong departing from C1 and going down to infinity.

The junction a3 + a4 + a5 − b − a2 on the right can be undone and replaced by a string

ending on A2 and crossing backward successively the cuts of B,A3, A4, A5, and emerging

behind the BA3A4A5 screen as a c prong that goes down to infinity. In other words

looking from the right through the BA3A4A5 screen one sees c strings instead of the

original (oppositely oriented) fundamental strings (see figure 2). Likewise for the fourth

transformation in (5.7) with A2, C1 exchanged with A1, C2. The conclusion is that the

screen formed by BA3A4A5 changes fundamental strings to c strings while reversing the

orientation, and viceversa. The fact that fundamental strings can be seen as oppositely

oriented c strings and viceversa, creates a Z2 symmetry among the roots of E6. This
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Figure 2. The Jordan strings representing the junctions c1 and a3 + a4 + a5 − b − a2

symmetry is only evident when B,A3, A,A5 collapse before the others branes, and A1, A2

and C1, C2 collapse symmetrically with respect to the BA3A4A5 screen. The orbifold with

respect to this Z2 symmetry gives rise, in the collapsing limit, to F4. This is our F-string

description of the E6 folding to F4.

6 The G2 algebra

Let us now carry out the same procedure for the G2 algebra that comes from the so(8)

one via a triple folding under the extended outer automorphism group of D4 (due to its

triality). Thus we briefly review the root structure of this parent algebra. As we saw

in the first section, the so(8) algebra is constructed with 4 a-prongs, one b-prong and

one c-prong. The relevant vector space is an R
6 generated by {a1, . . . ,a4,b, c} and the

roots are:

±(ai − aj), 1 ≤ i < j ≤ 4

±(ai + aj − b− c), 1 ≤ i < j ≤ 4 (6.1)

They are 24. Adding the 4 Cartan generators makes 28 dimensions.

The simple roots are:

α1 = a1 − a2, α2 = a2 − a3,

α3 = a3 − a4, α4 = a3 + a4 − b− c. (6.2)

The symmetries of the D4 Dynkin diagram are the ones of the equilateral triangle, namely

they form a group T3 made of the Z3 rotations of the roots α1,3,4 , together with the

three reflections:

τ1(α1,4) = α4,1, τ1(αi) = αi, i = 2, 3
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τ2(α3,4) = α4,3, τ2(αi) = αi, i = 1, 2 (6.3)

τ3(α1,3) = α3,1, τ3(αi) = αi, i = 2, 4

For instance, by folding D4 under τ2 alone we obtained in the first section the algebra B3,

corresponding to so(7). As far as G2 is concerned, instead, we need all the reflections

(actually just two of them will be enough as we are going to show), but we can disregard

the invariance under the rotations, since the latter are simply products of two reflections.

Hence, in terms of string junctions the reflections (6.3) are generated by

τ1(a1) =
1

2
(a1 + a2 + a3 + a4 − b− c)

τ1(a2) =
1

2
(a1 + a2 − a3 − a4 + b + c)

τ1(a3) =
1

2
(a1 − a2 + a3 − a4 + b + c)

τ1(a4) =
1

2
(a1 − a2 − a3 + a4 + b + c) (6.4)

and

τ3(a1) =
1

2
(a1 + a2 + a3 − a4)

τ3(a2) =
1

2
(a1 + a2 − a3 + a4)

τ3(a3) =
1

2
(a1 − a2 + a3 + a4)

τ3(a4) =
1

2
(−a1 + a2 + a3 + a4) (6.5)

while, as we already know (compare with (4.4)),

τ2(a4) = b + c − a4, τ2(ai) = ai, i = 1, 2, 3 (6.6)

and in any case b and c are left unchanged

τi(b) = b, τi(c) = c, i = 1, 2, 3

First of all, notice that only two independent constraints on R
6 are imposed by the

joint action of these three reflections, which is consistent with the rank being lowered

by two units. Indeed, using the usual definition for the images (4.2), the correspon-

dences (6.4), (6.5) and (6.6) amount to the following identifications:

τ1 =⇒ ā4 ≈ a2 + a3 − a1

τ2 =⇒ a4 ≈ ā4

τ3 =⇒ a4 ≈ a2 + a3 − a1 (6.7)

We soon recognize in the second constraint above the fractional nature of the fourth A-

brane and we immediately see that one of the three identifications is not independent of

– 18 –



J
H
E
P
1
1
(
2
0
1
0
)
0
2
5

the other two. Thus, the relevant vector space for the G2 algebra will be given by the

following quotient:

Span {a1, . . . ,a4,b, c}

{a4 ≈ ā4 ≈ a2 + a3 − a1}
≃ R

4 (6.8)

As in the previous cases, let us now proceed to the explicit construction of the roots.

By looking at the 4 simple roots of so(8) we readily notice that just one of them, α2

is not touched at all by any of the elements of the triality group T3 (as it corresponds to

the middle node in the D4 Dynkin diagram): thus it corresponds to a short root and it

passes to the quotient keeping its squared length equal to -2. The remaining three simple

roots of so(8) are pairwise exchanged by the {τi}i=1,2,3, so that there exist clearly only

one invariant linear combination of them, namely α1 + α3 + α4: this corresponds to a long

root and, as such, it survives to the quotient but it has three times the squared length of

the previous one, i.e. -6. Hence, the simple roots of G2 will be:

β1 ≡ a1 − a2 + 2a3 − b − c β2 ≡ a2 − a3 (6.9)

Using the usual scalar product (3.7), it is easy to find out the Cartan matrix of the

G2 algebra:

〈β1, β1〉 = −6, 〈β2, β2〉 = −2, 〈β1, β2〉 = 3

We are now ready to write down explicitly all the roots of G2. As we have seen for

the simple roots, of the 24 roots of the parent D4 one fourth of them passes directly to the

quotient without any change (short roots):

± (a2 − a3), ±(a1 − ā2), ±(a1 − ā3) (6.10)

They are 6 and explicitly look like:

± β2 = ±(a2 − a3),

±(β1 + 2β2) = ±(a1 + a2 − b − c), (6.11)

±(β1 + β2) = ±(a1 + a3 − b − c).

Of the remaining three fourths of the D4 roots, only one third survives the quotient, namely

the 6 singlet combinations (long roots), and we will write them directly in the explicit form:

± β1 = ±(a1 − a2 + 2a3 − b− c),

±(β1 + 3β2) = ±(a1 + 2a2 − a3 − b− c), (6.12)

±(2β1 + 3β2) = ±(2a1 + a2 + a3 − 2b− 2c).

All in all we have 6 short + 6 long = 12 roots, still represented by string junctions with

vanishing charge at infinity. Adding the 2 zeroes corresponding to the Cartan generators

makes a total of 14, the dimension of G2.

Notice that the a4-prong has disappeared from the roots of G2. However this is only

apparent. In fact, in the simple root β1 the junction a1 − a2 is easily interpretable, but
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Figure 3. The Jordan strings representing the junctions a1 − a2 and a3 + a4 − b− c.

the junction 2a3 − b − c would represent an A-string starting from the brane A3, circling

around the CB orientifold and returning to the same brane with opposite orientation, i.e.

it would be a non-orientable string. Such a string would be massive in the collapsing limit.

The paradox is explained by correctly interpreting β1 as a1−a2 +a3−a4 +a3− ā4. In this

case, all the involved junctions (a1 − a2, a3 − a4 and a3 − ā4) are massless Jordan strings,

and the paradox disappears.

So far we have shown that the folding of the D4 algebra down to G2 can be implemented

in terms of string junctions. We would like now to show that the symmetry responsible for

such folding can be interpreted in a natural way as a symmetry of F-string configurations.

The transformation (6.6) has already been understood by interpreting a CB bound state

as an orientifold. This reduces the transformations that need to be interpreted to the

set (6.4). It is easy to see that these transformations can be replaced by the following ones

τ1(a1 + a2) = a1 + a2

τ1(a1 − a2) = a3 + a4 − b − c

τ1(a1 − a3) = a2 + a4 − b − c

τ1(a3 − a4) = a3 − a4 (6.13)

In fact from these we can derive (6.4) and viceversa. The interpretation of the first and

last equations are of course trivial. As for the others let us consider the following brane

resolution of the relevant I∗s0 singularity. The CB block at the center, A1, A2 at the left

and A3, A4 at the right. Then a1 − a2 represents a fundamental string departing from A1

and ending on A2, while a3 + a4 − b − c represents a fundamental string departing from

A3 going around the orbifold CB and returning to A4 with reversed orientation. We know

that the latter is the junction a3 − ā4 which has been already identified by τ2 with a3 −a4,

see figure 3. The symmetry of this configuration under reflection with respect to the CB

block is evident (in this local representation).

Going to the third of the (6.13), the junction a1−a3 is a fundamental string that departs

from A1 and ends on A3 without crossing any cut. On the other hand a2 + a4 − b − c

is a fundamental string that departs from A2, crosses the C and B cuts and ends on A4
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with reverse orientation. Again, due to the presence of an orientifold we identify A4 with

its mirror image, which means identifying a2 + a4 −b− c with a string stretching from A2

to A4 without crossing cuts. Even after these moves the symmetry of the configuration is

not immediately evident. But it is easy to see that using (6.13) and in addition τ1(a2 −

a3) = a2 − a3, which also follows from (6.4), one can pass from the second to the third

transformation in (6.13). Since the former is a symmetry also the latter is.

7 Symplectic algebras

The last non-simply laced algebras in the classification are the symplectic ones. The sp(n)

(n > 1) algebra5 is a Z2 folding of the su(2n) algebra under its Z2 outer automorphism

that reflects the nodes of the A2n−1 Dynkin diagram with respect to the central one. The

A2n−1 algebra is obviously realized by means of a-type junctions stretching among 2n D7

branes on top of one another (giving rise to U(2n) gauge group). The positive roots of this

algebra are:

ai − aj, 1 ≤ i < j ≤ 2n (7.1)

while the simple ones are:

αi ≡ ai − ai+1, 1 ≤ i ≤ 2n − 1 (7.2)

The Z2 symmetry acts on these simple roots as:

αi ↔ α2n−i (7.3)

so that αn (corresponding to the central node) remains unchanged. This Z2 symmetry is

realized by the correspondences

ai ↔ −a2n−i+1 (7.4)

As is evident from (7.4), by imposing such constraints we half the dimension R
2n vector

space we started with, so that the relevant vector space for the sp(n) algebra will be the

following quotient:

Span {a1, . . . ,a2n}

{ai + a2n−i+1 ≈ 0}i=1,...,n
≃ R

n (7.5)

Following the example of the previous cases it is easy to explicitly construct the positive

roots. First we have

2ai − 2a2n−i+1, 1 ≤ i ≤ n (7.6)

that descend straight from the invariant roots of su(2n). They are long roots. The other

positive roots are, as usual, invariant combination of the su(2n) ones. They are

ai − aj + a2n−j+1 − a2n−i+1, 1 ≤ i < j < 2n, i + j ≤ 2n (7.7)

5We adopt here the convention for which n stands for the rank of the algebra. So sp(2) ∼ so(5).

– 21 –



J
H
E
P
1
1
(
2
0
1
0
)
0
2
5

They are n(n − 1) short positive roots. It is easy to see that a set of simple roots is

γi ≡ ai − ai+1 + a2n−i − a2n−i+1, 1 ≤ i ≤ n − 1

γn ≡ 2an − 2an+1. (7.8)

These are n − 1 short and 1 long. The Cartan matrix of Cn is easily recovered, using the

scalar product (3.7).

In conclusion it is easy to realize the folding of A2n−1 and obtain the roots of the Lie

algebra Cn in terms of junctions. But this is only a formal operation, without any string

interpretation behind it. In fact, having at hand only A branes it is impossible to construct

an orientifold or a screen like in the previous cases, since fundamental strings that cross

A-cuts remain fundamental strings. Thus, being not aware of any realization of O7+ planes

out of F theory 7-branes,6 we conclude that the Cn Lie algebras cannot be realized in the

geometry considered in this paper.

8 Final remarks

In this paper we have presented a string/brane interpretation of the emergence of ad-

joint representations of non-simply-laced Lie algebras, using the techniques of string junc-

tions, [23], with the only exception of the sp(n) ones.

We remark that, following the methods of [23], by means of junctions, we could repro-

duce the weights of other representations beside the adjoint ones. These representations,

in the context of gauge symmetry enhancement, are usually identified with matter. How-

ever, from the geometrical point of view, for simply-laced Lie algebras, they can arise only

on intersection curves of the internal manifolds. Our geometrical setting does not allow

us to ‘see’ such curves, because we have simplified it with the purpose of presenting a

string/brane interpretation of the adjoint representations.

On the other hand, for non-simply-laced Lie algebras, there seem to exist light states

that do not localize on such intersection curves, [16]. However the corresponding represen-

tations clearly arise from Higgsing representations other than the adjoint in the parent Lie

algebra (that is, the relevant simply-laced Lie algebra we are folding). Reproducing the

weights of such representations by means of junctions in this context can in principle be

done following [23], but it would be only a formal exercise, because at this stage we do not

know a string/brane interpretation of such representations. The problem of finding such

interpretation is certainly interesting and we leave it for the future.
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