111 research outputs found

    The Protection of Comptuer Programs in Japan

    Get PDF

    A Comparison Of Crassostrea Virginica And C. Ariakensis In Chesapeake Bay: Does Oyster Species Affect Habitat Function?

    Get PDF
    We examined the possibility that a nonnative oyster species would provide an ecologically functional equivalent of the native oyster species if introduced into the Chesapeake Bay. Habitat complexity and associated benthic communities of experimental triploid Crassostrea virginica and Crassostrea ariakensis reefs were investigated at 4 sites of varying salinity, tidal regime, water depth, predation intensity, and disease pressure in the Chesapeake Bay region (Maryland and Virginia). Four experimental treatments were established at each site: C. virginica, C. ariakensis, 50:50 of C. virginica and C. ariakensis, and shell only. Abundance, biomass, species richness, evenness, dominance, and diversity of reef-associated fauna were evaluated in relation to habitat location and oyster species. Although habitat complexity varied with location, no differences among complexity were associated with oyster species. Similarly, differences in faunal assemblages were more pronounced between sites than within sites. Our results show functional equivalency between oyster species with respect to habitat at the intertidal site and the low-salinity subtidal location. At subtidal sites of higher salinity, however, the numbers of organisms associated with C. virginica reefs per unit of oyster biomass were significantly greater than the numbers of organisms associated with C. ariakensis reefs. Multivariate analyses of data from subtidal high-salinity sites revealed unique communities associated with C. virginica treatments, whereas mixed-oyster species assemblages were functionally equivalent to monospecific C. ariakensis experimental treatments. Our study represents the first effort to quantify the potential habitat function of C. ariakensis, which has been proposed for an intentional introduction into Chesapeake Bay, and provides evidence of species-specific similarities and differences in reef-associated communities

    Survival And Growth Of Triploid Crassostrea Virginica (Gmelin, 1791) And C-Ariakensis (Fujita, 1913) In Bottom Environments Of Chesapeake Bay: Implications For An Introduction

    Get PDF
    Survival and growth of triploid Crassostrea virginica and triploid C. ariakensis were investigated at four sites Surrounding Chesapeake Bay, United States, that varied tried in salinity, tidal regime, water depth, predation intensity and disease pressure. Four experimental treatments were established at each site: C. virginica; C. ariakensis; 50:50 of C. virginica: C. ariakensis: and shell only. Oysters were deployed at mean shell heights of 12.80 min and 13.85 mm (C. virginica and C. ariakensis, respectively), at an overall density of 347.5 oysters m(-2). Oyster survival and growth varied significantly, with site and species. Survival was significantly higher in C. virginica than C. ariakensis at the intertidal site, and significantly higher in C. ariakensis than C. virginica at the highest salinity, subtidal site. Survival did not differ significantly between species at the mid and low salinity, subticial sites. For both Species. survival differed significantly between sites, with lowest survival in both species Occurring Lit the intertidal site. Among the subtidal sites. C. virginica survival varied inversely with salinity, whereas C. ariakensis had the lowest Survival at the mid salinity site. Eight months after deployment C. ariakensis were significantly, larger than C. virginica at all sites. This difference generally persisted throughout the experiment, though the size differences between oyster species at the lowest salinity site were small (\u3c 10%). Shell heights within single-species treatments differed significantly between sites; highest growth rates were observed at the high salinity, subtidal site, whereas lowest growth rates were observed at the high salinity, intertidal site. At low and mid salinity subtidal sites, C. ariakensis shell heights were significantly greater in the single-species treatment compared with the mixed-species treatment. Perkinsus marinus infections occurred in both species at all sites, with prevalences varying between sites. In C. virginica, moderate and high intensity infections were only common at the two higher salinity sites, whereas infections in C. ariakensis were generally low, to rare. Haplosporidium nelsoni infections in C. virginica were only observed at the two higher salinity sites and prevalences were generally low. Two out of 53 C. ariakensis tested at the high salinity, subtidal site had rare H. nelsoni infections. Bonamia spp. infections were never observed. Our study supports previous laboratory findings and observations from its native range that C. ariakensis Survives poorly in intertidal habitats. In subtidal habitats, however, C. ariakensis displayed broad environmental tolerances, often exceeding native oyster Survival and growth rates. Post-introduction C. ariakensis Populations would be shaped by the survival and growth patterns described here, but also by their reproductive success, larval Survival, predator-prey interactions and prevailing disease dynamics

    The likelihood of extinction of iconic and dominant herbivores and detritivores of coral reefs: the parrotfishes and surgeonfishes

    Get PDF
    Parrotfishes and surgeonfishes perform important functional roles in the dynamics of coral reef systems. This is a consequence of their varied feeding behaviors ranging from targeted consumption of living plant material (primarily surgeonfishes) to feeding on detrital aggregates that are either scraped from the reef surface or excavated from the deeper reef substratum (primarily parrotfishes). Increased fishing pressure and widespread habitat destruction have led to population declines for several species of these two groups. Species-specific data on global distribution, population status, life history characteristics, and major threats were compiled for each of the 179 known species of parrotfishes and surgeonfishes to determine the likelihood of extinction of each species under the Categories and Criteria of the IUCN Red List of Threatened Species. Due in part to the extensive distributions of most species and the life history traits exhibited in these two families, only three (1.7%) of the species are listed at an elevated risk of global extinction. The majority of the parrotfishes and surgeonfishes (86%) are listed as Least Concern, 10% are listed as Data Deficient and 1% are listed as Near Threatened. The risk of localized extinction, however, is higher in some areas, particularly in the Coral Triangle region. The relatively low proportion of species globally listed in threatened Categories is highly encouraging, and some conservation successes are attributed to concentrated conservation efforts. However, with the growing realization of man's profound impact on the planet, conservation actions such as improved marine reserve networks, more stringent fishing regulations, and continued monitoring of the population status at the species and community levels are imperative for the prevention of species loss in these groups of important and iconic coral reef fishes

    Diagnostic accuracy of existing methods for identifying diabetic foot ulcers from inpatient and outpatient datasets

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As the number of persons with diabetes is projected to double in the next 25 years in the US, an accurate method of identifying diabetic foot ulcers in population-based data sources are ever more important for disease surveillance and public health purposes. The objectives of this study are to evaluate the accuracy of existing methods and to propose a new method.</p> <p>Methods</p> <p>Four existing methods were used to identify all patients diagnosed with a foot ulcer in a Department of Veterans Affairs (VA) hospital from the inpatient and outpatient datasets for 2003. Their electronic medical records were reviewed to verify whether the medical records positively indicate presence of a diabetic foot ulcer in diagnoses, medical assessments, or consults. For each method, five measures of accuracy and agreement were evaluated using data from medical records as the gold standard.</p> <p>Results</p> <p>Our medical record reviews show that all methods had sensitivity > 92% but their specificity varied substantially between 74% and 91%. A method used in Harrington et al. (2004) was the most accurate with 94% sensitivity and 91% specificity and produced an annual prevalence of 3.3% among VA users with diabetes nationwide. A new and simpler method consisting of two codes (707.1× and 707.9) shows an equally good accuracy with 93% sensitivity and 91% specificity and 3.1% prevalence.</p> <p>Conclusions</p> <p>Our results indicate that the Harrington and New methods are highly comparable and accurate. We recommend the Harrington method for its accuracy and the New method for its simplicity and comparable accuracy.</p

    The Conservation Status of Marine Bony Shorefishes of the Greater Caribbean

    Get PDF
    The greater Caribbean biogeographic region covered in this report (representing 38 countries and territories) encompasses an outstanding marine bony shorefish richness of approximately 1,360 species, with many (53%) being endemic. This report provides an overview of the conservation status of greater Caribbean shorefishes, with detailed information available through the IUCN Red List, and gives recommendations

    Development of a modified floristic quality index as a rapid habitat assessment method in the northern Everglades

    Get PDF
    Floristic quality assessments (FQA) using floristic quality indices (FQIs) are useful tools for assessing and comparing vegetation communities and related habitat condition. However, intensive vegetation surveys requiring significant time and technical expertise are necessary, which limits the use of FQIs in environmental monitoring programs. This study modified standard FQI methods to develop a rapid assessment method for characterizing and modeling change in wetland habitat condition in the northern Everglades. Method modifications include limiting vegetation surveys to a subset of taxa selected as indicators of impact and eliminating richness and/or abundance factors from the equation. These modifications reduce the amount of time required to complete surveys and minimizes misidentification of species, which can skew results. The habitat characterization and assessment tool (HCAT) developed here is a FQA that uses a modified FQI to detect and model changes in habitat condition based on vegetation communities, characterize levels of impact as high, moderate, or low, provide predictive capabilities for assessing natural resource management or water management operation alternatives, and uniquely links a FQI with readily accessible environmental data. For application in the northern Everglades, surface water phosphorus concentrations, specific conductivity, distance from canal, and days since dry (5-year average) explained 67% of the variability in the dataset with \u3e 99.9% confidence. The HCAT approach can be used to monitor, assess, and evaluate habitats with the objective of informing management decisions (e.g., as a screening tool) to maximize conservation and restoration of protected areas and is transferable to other wetlands with additional modification

    A classification of diabetic foot infections using ICD-9-CM codes: application to a large computerized medical database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diabetic foot infections are common, serious, and varied. Diagnostic and treatment strategies are correspondingly diverse. It is unclear how patients are managed in actual practice and how outcomes might be improved. Clarification will require study of large numbers of patients, such as are available in medical databases. We have developed and evaluated a system for identifying and classifying diabetic foot infections that can be used for this purpose.</p> <p>Methods</p> <p>We used the (VA) Diabetes Epidemiology Cohorts (DEpiC) database to conduct a retrospective observational study of patients with diabetic foot infections. DEpiC contains computerized VA and Medicare patient-level data for patients with diabetes since 1998. We determined which ICD-9-CM codes served to identify patients with different types of diabetic foot infections and ranked them in declining order of severity: Gangrene, Osteomyelitis, Ulcer, Foot cellulitis/abscess, Toe cellulitis/abscess, Paronychia. We evaluated our classification by examining its relationship to patient characteristics, diagnostic procedures, treatments given, and medical outcomes.</p> <p>Results</p> <p>There were 61,007 patients with foot infections, of which 42,063 were classifiable into one of our predefined groups. The different types of infection were related to expected patient characteristics, diagnostic procedures, treatments, and outcomes. Our severity ranking showed a monotonic relationship to hospital length of stay, amputation rate, transition to long-term care, and mortality.</p> <p>Conclusions</p> <p>We have developed a classification system for patients with diabetic foot infections that is expressly designed for use with large, computerized, ICD-9-CM coded administrative medical databases. It provides a framework that can be used to conduct observational studies of large numbers of patients in order to examine treatment variation and patient outcomes, including the effect of new management strategies, implementation of practice guidelines, and quality improvement initiatives.</p
    • …
    corecore