56 research outputs found

    Coronal Diagnostics from Narrowband Images around 30.4 nm

    Full text link
    Images taken in the band centered at 30.4 nm are routinely used to map the radiance of the He II Ly alpha line on the solar disk. That line is one of the strongest, if not the strongest, line in the EUV observed in the solar spectrum, and one of the few lines in that wavelength range providing information on the upper chromosphere or lower transition region. However, when observing the off-limb corona the contribution from the nearby Si XI 30.3 nm line can become significant. In this work we aim at estimating the relative contribution of those two lines in the solar corona around the minimum of solar activity. We combine measurements from CDS taken in August 2008 with temperature and density profiles from semiempirical models of the corona to compute the radiances of the two lines, and of other representative coronal lines (e.g., Mg X 62.5 nm, Si XII 52.1 nm). Considering both diagnosed quantities from line ratios (temperatures and densities) and line radiances in absolute units, we obtain a good overall match between observations and models. We find that the Si XI line dominates the He II line from just above the limb up to ~2 R_Sun in streamers, while its contribution to narrowband imaging in the 30.4 nm band is expected to become smaller, even negligible in the corona beyond ~2 - 3 R_Sun, the precise value being strongly dependent on the coronal temperature profile.Comment: 26 pages, 11 figures; to be published in: Solar Physic

    Sediment Delivery to Sustain the Ganges-Brahmaputra Delta Under Climate Change and Anthropogenic Impacts

    Get PDF
    The principal nature-based solution for offsetting relative sea-level rise in the Ganges-Brahmaputra delta is the unabated delivery, dispersal, and deposition of the rivers’ ~1 billion-tonne annual sediment load. Recent hydrological transport modeling suggests that strengthening monsoon precipitation in the 21st century could increase this sediment delivery 34-60%; yet other studies demonstrate that sediment could decline 15-80% if planned dams and river diversions are fully implemented. We validate these modeled ranges by developing a comprehensive field-based sediment budget that quantifies the supply of Ganges-Brahmaputra river sediment under varying Holocene climate conditions. Our data reveal natural responses in sediment supply comparable to previously modeled results and suggest that increased sediment delivery may be capable of offsetting accelerated sea-level rise. This prospect for a naturally sustained Ganges-Brahmaputra delta presents possibilities beyond the dystopian future often posed for this system, but the implementation of currently proposed dams and diversions would preclude such opportunities

    Protein Crosslinking by Transglutaminase Controls Cuticle Morphogenesis in Drosophila

    Get PDF
    Transglutaminase (TG) plays important and diverse roles in mammals, such as blood coagulation and formation of the skin barrier, by catalyzing protein crosslinking. In invertebrates, TG is known to be involved in immobilization of invading pathogens at sites of injury. Here we demonstrate that Drosophila TG is an important enzyme for cuticle morphogenesis. Although TG activity was undetectable before the second instar larval stage, it dramatically increased in the third instar larval stage. RNA interference (RNAi) of the TG gene caused a pupal semi-lethal phenotype and abnormal morphology. Furthermore, TG-RNAi flies showed a significantly shorter life span than their counterparts, and approximately 90% of flies died within 30 days after eclosion. Stage-specific TG-RNAi before the third instar larval stage resulted in cuticle abnormality, but the TG-RNAi after the late pupal stage did not, indicating that TG plays a key role at or before the early pupal stage. Immediately following eclosion, acid-extractable protein from wild-type wings was nearly all converted to non-extractable protein due to wing maturation, whereas several proteins remained acid-extractable in the mature wings of TG-RNAi flies. We identified four proteins—two cuticular chitin-binding proteins, larval serum protein 2, and a putative C-type lectin—as TG substrates. RNAi of their corresponding genes caused a lethal phenotype or cuticle abnormality. Our results indicate that TG-dependent protein crosslinking in Drosophila plays a key role in cuticle morphogenesis and sclerotization

    LITHOTHAMNION SPECIES (HAPALIDIALES, RHODOPHYTA) IN THE ARCTIC AND SUBARCTIC: PROVIDING A SYSTEMATICS FOUNDATION IN A TIME OF RAPID CLIMATE CHANGE

    Get PDF
    International audienceCoralline red algae in the genera Clathromorphum, Phymatolithon and Lithothamnion are important benthic ecosystem engineers in the photic zone of the Arctic and Subarctic. In these regions, the systematics and biogeography of Clathromorphum and Phymatolithon species have mostly been resolved whereas Lithothamnion species have not. Seventy-three specific and infraspecific names have been given to Arctic and Subarctic Lithothamnion specimens, the vast majority by Mikael H. Foslie in the late 19th and early 20th century. From the type specimens of 38 of these names, partial rbcL sequences were obtained that enabled us to correctly apply the earliest available names and to correctly place the remainder in synonymy. Three of the four Arctic and Subarctic Lithothamnion species, L. lemoineae, L. soriferum and L. tophiforme were distinct based on all three sequenced genes, two plastid encoded, rbcL and psbA, and the mitochondrial encoded COI-5P; rbcL and COI-5P also segregated L. glaciale from L. tophiforme but psbA did not. Based on DNA sequences, morpho-anatomy and biogeography, we recognize all four species. It is difficult to identify these species based on morpho-anatomy and they can all occur as encrusting corallines, as rhodoliths or as maerl. We demonstrate the importance of sequencing these historical type specimens by showing that the recently proposed northeast Atlantic L. erinaceum is a synonym of one of the earliest published Arctic species of Lithothamnion, L. soriferum, itself incorrectly placed in synonymy under L. tophiforme based on morpho-anatomy. Based on sequenced specimens, we update the distributions and ecology of these species.

    Lithothamnion (Hapalidiales, Rhodophyta) in the changing Arctic and Subarctic: DNA sequencing of type and recent specimens provides a systematics foundation*

    Get PDF
    Coralline red algae in the non-geniculate genera Clathromorphum, Phymatolithon and Lithothamnion are important benthic ecosystem engineers in the photic zone of the Arctic and Subarctic. In these regions, the systematics and biogeography of Clathromorphum and Phymatolithon have mostly been resolved whereas Lithothamnion has not, until now. Seventy-three specific and infraspecific names were given to Arctic and Subarctic Lithothamnion specimens in the late 19th and early 20th century by Frans R. Kjellman and Mikael H. Foslie. DNA sequences from 36 type specimens, five historical specimens, and an extensive sampling of recent collections resulted in the recognition of four Arctic and Subarctic Lithothamnion species, L. glaciale, L. lemoineae, L. soriferum and L. tophiforme. Three genes were sequenced, two plastid-encoded, rbcL and psbA, and the mitochondrial encoded COI-5P; rbcL and COI-5P segregated L. glaciale from L. tophiforme but psbA did not. Partial rbcL sequences obtained from type collections enabled us to correctly apply the earliest available names and to correctly place the remainder in synonymy. We were unable to sequence another 22 type specimens, but all of these are more recent names than those that are now applied. It is difficult to identify these species solely on morpho-anatomy as they can all occur as encrusting corallines or as maerl (rhodoliths). We demonstrate the importance of sequencing historical type specimens by showing that the recently proposed North-east Atlantic L. erinaceum is a synonym of one of the earliest published Arctic species of Lithothamnion, L. soriferum, itself incorrectly placed in synonymy under L. tophiforme based on morpho-anatomy. Based on sequenced specimens, we update the distributions and ecology of these species

    Focused Examination of the Intestinal lamina Propria Yields Greater Molecular Insight into Mechanisms Underlying SIV Induced Immune Dysfunction

    Get PDF
    Background: The Gastrointestinal (GI) tract is critical to AIDS pathogenesis as it is the primary site for viral transmission and a major site of viral replication and CD4 + T cell destruction. Consequently GI disease, a major complication of HIV/SIV infection can facilitate translocation of lumenal bacterial products causing localized/systemic immune activation leading to AIDS progression. Methodology/Principal Findings: To better understand the molecular mechanisms underlying GI disease we analyzed global gene expression profiles sequentially in the intestine of the same animals prior to and at 21 and 90d post SIV infection (PI). More importantly we maximized information gathering by examining distinct mucosal components (intraepithelial lymphocytes, lamina propria leukocytes [LPL], epithelium and fibrovascular stroma) separately. The use of sequential intestinal resections combined with focused examination of distinct mucosal compartments represents novel approaches not previously attempted. Here we report data pertaining to the LPL. A significant increase (61.7-fold) in immune defense/inflammation, cell adhesion/migration, cell signaling, transcription and cell division/differentiation genes were observed at 21 and 90d PI. Genes associated with the JAK-STAT pathway (IL21, IL12R, STAT5A, IL10, SOCS1) and T-cell activation (NFATc1, CDK6, Gelsolin, Moesin) were notably upregulated at 21d PI. Markedly downregulated genes at 21d PI included IL17D/IL27 and IL28B/IFNc3 (anti-HIV/viral), activation induced cytidine deaminase (B-cell function) an

    European Red List of Habitats Part 1. Marine habitats

    Get PDF
    The European Red List of Habitats provides an overview of the risk of collapse (degree of endangerment) of marine, terrestrial and freshwater habitats in the European Union (EU28) and adjacent regions (EU28+), based on a consistent set of categories and criteria, and detailed data and expert knowledge from involved countries1. A total of 257 benthic marine habitat types were assessed. In total, 19% (EU28) and 18% (EU28+) of the evaluated habitats were assessed as threatened in categories Critically Endangered, Endangered and Vulnerable. An additional 12% were Near Threatened in the EU28 and 11% in the EU28+. These figures are approximately doubled if Data Deficient habitats are excluded. The percentage of threatened habitat types differs across the regional seas. The highest proportion of threatened habitats in the EU28 was found in the Mediterranean Sea (32%), followed by the North-East Atlantic (23%), the Black Sea (13%) and then the Baltic Sea (8%). There was a similar pattern in the EU28+. The most frequently cited pressures and threats were similar across the four regional seas: pollution (eutrophication), biological resource use other than agriculture or forestry (mainly fishing but also aquaculture), natural system modifications (e.g. dredging and sea defence works), urbanisation and climate change. Even for habitats where the assessment outcome was Data Deficient, the Red List assessment process has resulted in the compilation of a substantial body of useful information to support the conservation of marine habitats

    Observations of the Sun at Vacuum-Ultraviolet Wavelengths from Space. Part II: Results and Interpretations

    Full text link
    corecore