1,011 research outputs found

    Study of instabilities in linear Hall current accelerators

    Get PDF
    Ion and electron conservation equations used in analysis of instability of linear Hall current accelerato

    Apollo Lightcraft Project

    Get PDF
    This second year of the NASA/USRA-sponsored Advanced Aeronautical Design effort focused on systems integration and analysis of the Apollo Lightcraft. This beam-powered, single-stage-to-orbit vehicle is envisioned as the shuttlecraft of the 21st century. The five person vehicle was inspired largely by the Apollo Command Module, then reconfigured to include a new front seat with dual cockpit controls for the pilot and co-pilot, while still retaining the 3-abreast crew accommodations in the rear seat. The gross liftoff mass is 5550 kg, of which 500 kg is the payload and 300 kg is the LH2 propellant. The round trip cost to orbit is projected to be three orders of magnitude lower than the current space shuttle orbiter. The advanced laser-driven 5-speed combined-cycle engine has shiftpoints at Mach 1, 5, 11 and 25+. The Apollo Lightcraft can climb into low Earth orbit in three minutes, or fly to any spot on the globe in less than 45 minutes. Detailed investigations of the Apollo Lightcraft Project this second year further evolved the propulsion system design, while focusing on the following areas: (1) man/machine interface; (2) flight control systems; (3) power beaming system architecture; (4) re-entry aerodynamics; (5) shroud structural dynamics; and (6) optimal trajectory analysis. The principal new findings are documented. Advanced design efforts for the next academic year (1988/1989) will center on a one meter+ diameter spacecraft: the Lightcraft Technology Demonstrator (LTD). Detailed engineering design and analyses, as well as critical proof-of-concept experiments, will be carried out on this small, near-term machine. As presently conceived, the LTD could be constructed using state of the art components derived from existing liquid chemical rocket engine technology, advanced composite materials, and high power laser optics

    From: H.B. Garrison, Jr. & Sandra Stooksbury

    Get PDF

    The Survey for Ionization in Neutral Gas Galaxies: I. Description and Initial Results

    Get PDF
    We introduce the Survey for Ionization in Neutral Gas Galaxies (SINGG), a census of star formation in HI-selected galaxies. The survey consists of H-alpha and R-band imaging of a sample of 468 galaxies selected from the HI Parkes All Sky Survey (HIPASS). The sample spans three decades in HI mass and is free of many of the biases that affect other star forming galaxy samples. We present the criteria for sample selection, list the entire sample, discuss our observational techniques, and describe the data reduction and calibration methods. This paper focuses on 93 SINGG targets whose observations have been fully reduced and analyzed to date. The majority of these show a single Emission Line Galaxy (ELG). We see multiple ELGs in 13 fields, with up to four ELGs in a single field. All of the targets in this sample are detected in H-alpha indicating that dormant (non-star forming) galaxies with M(HI) > ~3e7 M_sun are very rare. A database of the measured global properties of the ELGs is presented. The ELG sample spans four orders of magnitude in luminosity (H-alpha and R-band), and H-alpha surface brightness, nearly three orders of magnitude in R surface brightness and nearly two orders of magnitude in H-alpha equivalent width (EW). The surface brightness distribution of our sample is broader than that of the Sloan Digital Sky Survey spectroscopic sample, the (EW) distribution is broader than prism-selected samples, and the morphologies found include all common types of star forming galaxies (e.g. irregular, spiral, blue compact dwarf, starbursts, merging and colliding systems, and even residual star formation in S0 and Sa spirals). (abridged)Comment: 28 pages, ApJS, in press. Full resolution version with all panels of Fig. 8 available at http://sungg.pha.jhu.edu/publications.html . On line data available at http://sungg.pha.jhu.edu/PubData/ . Author list corrected. Wrong value for f_ap used in eq. 7 now corrected; typos corrected, non-used references replaced, others update
    corecore