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STUDY OF INSTABILITIES IN LINEAR HALL
CURRENT ACCELERATORS

G. W. Garrison, Jr., H. A. Hassan and R. K. Seals, Jr.
North Carolina State University

SUMMARY

The stability of a linezr Hall current accelerator with applied axial
electric and radial magnetic fields against a screw type perturbation is in-
vestigated. The analysis is based on the lon and electron conservation
equations and takes into consideration the effects of ionization. It is
shown that the observed instability cannot be explained when the axial
magnetic field is identically zero even when the unperturbed potential
and density distributions have both radial and axial dependence. On the other
hand, when the axial component of the magnetic field is small, but not zero,
the column is unstable, in the absence of an axial density gradient, to a
right-handed helical perturbation (m = -1). The resulting instability,
which is of the Kadomtsev-Nedospasov type, is analyzed using a normal mode
analysis.

INTRODUCTION

The instabilities observed in linear Hall current accelerators with
applied axial electric and radial magnetic fields (fig. 1) are typical of a
number of instabilities observed in devices which employ crossed electric and
magnetic fields (refs. 1, 2 and 3). In these accelerators, the ions are
accelerated more or less in the direction of the axial electric field while
the electron motion in the axial direction is retarded by the radial magnetic
field as a result of the large differences between the electron and ion radii
of gyration. Thus, a linear Hall accelerator avoids, to a large extent, the
space charge limitations of conventional ion rockets. Conservation of mass
requires the ion density to decrease with increasing velocity. Thus, with
the possible exception of a region next to the anode, the density gradient
and the applied axial electric field are antiparallel over much of the
accelerator length. Also, since the density at the wall is zero (Shottky
condition), the density and potential gradients in the radial direction are
not zero.

The systems considered by Simon (ref. 1), Hoh (ref. 2), and Morse
(ref. 3) have no density and potential gradients in the direction of the



applied magnetic field. Therefore, thelr results are not directly applicable
to a linear Hall accelerator. 1In an attempt to understand the nature of the
experimentally observed screw instability and associated anomalous diffusion
(refs. 4, 5, 6, 7, and 8), an analysis is performed in which the steady state
solution possesses both radial and axiasl dependence and the axisl component
of the magnetic field is identically zero. A normal mode analysis similar to
that employed by Johnson and Jerde (ref. 9) shows that the system is unstable
only when the sign of the product of the axial electric field and the density
gradientend its direction is positive, which is the Simon-Hoh criterion.
Since in the linear Hall accelerator the axial density gradient in the axial
electric field are antiparallel over much of the accelerator length, it is
concluded that such analysis cannot explain the observed instability.

The experiments of Hess et. al. (ref. 6) showed that the spectrum of
the instability was strikingly similar to that observed in the positive column
for magnetic fields above the critical value. Also, the instability was
found to exist all along the accelerator length. This, and the results of
the above analysis suggest that the origin of the instability may not be
dependent on the existence of an axial density gradient but may be a result
of the small, but non-vanishing axial component of the magnetic field. There-
fore, an anal ysis is performed which employs a magnetic field with both
radial and axial components. As a result of this analysis, it is shown that
the column is unstable, in the absence of axial density gradients, to a right-
handed helical perturbation (m = -1). The resulting instability is of the
Kadomtsev and Nedospasov type (ref. 10).

SYMBOLS

a defined in equation (21)
a-ee8g defined in Appendix C
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255 defined in equation (24A)
A defined in equation (24)
Al’ A2, A5 defined in Appendix C
APJ. defined in equation (33)
A;j defined in equation (27A)
b defined in equation (21)
bys b, defined in equation (35)
by.ee by defined in equation (4B) (Appendix B only)
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(33)
(274)

(25)
C

(244)
(33)
(274)
(35)
(24a)

diffusion coefficient

defined in equation (33)

defined in equation (24A)

electronic charge

defined in equation

electric field

defined in equation

defined in equation

(264)

(51)
(33)

defined in equation (27A)

density radial perturbation

integral transform of f

potential radial perturbation

defined in equation (47)

defined in equation (24)



H defined in equation (28)

H defined in equation (30)

I total current

J current density

J Bessel function

k wave number or Boltzmann constant
ko dimensionless wave number

ky ;5K 03 sk, defined in equation (35)

) defined in equation (28) or equation (55)
L integral transform of {4 or length of the device
m particle mass

M confluent hypergeometric function
M-M, defined in equation (11B)

n particle number density

ﬁx defined in equation (28)

N defined in equation (21)

N - N defined in equation (11B)

p*,q*,r* defined in equation (20A)

a defined in equation (1k4)

9459, defined in equation (50)

q5,qu,q5 defined in equation (53)

r, 9, x cylindrical coordinates

R radius of the device

Sgp defined in equation (26A)

S;P defined in equation (27A)



tyseae by defined in equation (8B)

T temperature

u;P defined in equation (26A)
U electric potential

U;P defined in equation (27A)
vy, Y, ' defined in equation (7B)
v temperature in electron volts
W mean velocity

¥ defined in equation (36)
(o defined in equation (46)
B defined in equation (46)
B defined in equation (22)
aj defined in equation (31)
75 defined in equation (47)
r Gamma function

? particle flux vector

s} ratio of mobilities

5, defined in equation (50)
Eﬁp Kronecker delta

JAN defined in Appendix C
D55, defined in equation (2B)
=} v, /v,

| defined in equation (47)
1757, defined in equation (3B) .

A wave length



r,x,o

”

defined in equation (47)

defined in equation (16)

particle mobility

defined in equation (44)

collision frequency

rate of production of charged particles per electron per sec.

defined in equation (35)

1/v

defined in equation (3B)

frequency of perturbation

growth rate of perturbation

refers

refers

refers

refers

refers

to

to

to

to

to

Subsecripts

electrons and ions, respectively

steady state

perturbed state

radial, axial and azimuthal direction, respectively

center line

Superscripts

vector quantity

denotes derivative or, use defined in equations (8) and (9)

use defined in equation (53)

dimensionless quantity



GOVERNING BQUATIONS

A collision dominated cylindrical plasma immersed in applied electric
and magnetic fields is considered as a model for the previously described
device. The frictional coupling between charged and neutral particles does
not set the netural gas in motion. The degree of ionization is assumed small
so that electron-ion collisions are not appreciable. The electron and ion
mean free paths are small compared to the tube radius. The production rate
of charged particles is assumed to be of the form gne, where ne is the
electron number density and ¢ is the number of ioniZing collisIons per
electron per second and depends upon the electron temperature, T,, and
the neutral gas density. Two stage ionization, volume recombination, and
electron attachment are neglected. The electron and ion gases are assumed to
be isothermal at temperatures Ié and I& respectively.

The governing equations are those of a slightly ionized gas in the
presence of electric and magnetic fields and may be derived from the moments
of the Boltzmann equation. The conservation of mass and momentum can be
written as

on,
—2€ . k" =
at v ni,ewi,e ni,eg (1)

-

+ eni,e(ﬁ + Vie xB) - kla,eVn. =0 (2)

-n, V. W
i,e i,e i,ei,e

where n 1is the particle number density, e is the electronic charge,
Y

E is the electric field, % is the magnetic field, W is the average
particle velocity, Xk is Boltzmann’s constant, m is the particle mass,

v 1is the collision frequency of charged particles with neutral particles,
and the subscripts 1 and e refer to ions and electrons respectively. In
writing these equations it is assumed that the collision frequency, v , 1is
large compared to the characteristic frequency of the system thus the inertia
terms may be neglected. Also, it has been assumed that electron and ion
temperatures are constants. These temperatures are usually calculated from
energy considerations.

Defining the particle flux vector as T, =n W, » the equations may
. : i,e i,e
be written in the form
an = _
dt +V ri,e =ng (5)
- e d - -
- v - =
'iHLenE + “i,eri,e x B Di,e n Fi,e 0 (&)



vwhere

e

Hise T m, v, (5)
i,e i,e
kﬂ& e
= —ac
Di,e m, Vv, (6)
i,e i,e

are the mobilities and diffusion coefficients respectively for the ions and
electrons. In writing the above equations it has been assumed that

n ~n, =n.

e i

An explicit expression for the particle flux vector can be obtained by
taking the dot and cross product of equation (h) with the magnetic field.
The resulting epxression can be written as

- -p

- ’ _ 7 - ’ 2
i,e ~ % “i,enE Di,evn * ui,eDi,evn x 3B
2 ’ 3 2 - =
+ ui,eui,e(nE B)B ui,eDi,e(Vn B)B
+ ! x3B )
“i,epi,e x ? (7
where
M,
i,e
“i e = 2 (8)
? 1 +p, B
i,e
D;
b = —— (9)
e 142 F
i,e

Combining equation (7) with equation (3) and noting that the assumption of

constant temperatures and mobilities permits Di e to be taken outside
2
the differential operators, the final equation is



-—p ’ 2 - ’ el
! VenE - D! VSn +u, D! V-(Vn x B)
i,e i,e i,e i,e

2 ’ -t =
- AV .
e i,e ui,eDi,e (vn B)B

) 2.2
+ pi,eui,ev (nE x B) =0 (10)
In deriving this result it is assumed that any induced magnetic fields are
much smaller than the externally applied magnetic field, i.e., VX B =0 .
Also the condition V(B B = 0 was employed along with Maxwell’s equation,
V.E = 0 . The former justifies the factoring out of u e and D1 e *
2

Equation (10) forms the basis for the stability analysis. A steady state
solution is first obtained and then the resulting solution is perturbed.
Thus, letting

-

- -
n=n+n , E=E +5§ s (11)

where n and .ﬁ represent the steady state solution, substituting into
equation®(10) and®ignoring higher order terms, one finds

d

ol AL (n'ﬁ1+ nlE ) - Dl, ve n, + B e i v-(Vn,x B)

iui,e ;.,v [B (n El+nE)]-ulele [(an B)B]

+ ui o 1 R * [(n E1+ nlE )xBl =0 . (12)

A normasl mode analysis is used to obtain the dispersion relation from
equation (12) and, hence, the conditions for instability.

STABILITY ANALYSIS FOR A PURELY RADIAL MAGNETIC FIELD

Steady State Solution

The steady state for the case of a uniform radial magnetic field can be
obtained from equations (3) and (7) or from equation (10). Using the relation
(ref. 11)

Iy, =To, (13)



equation (7) gives

Di- De anb ano
noEor = pi+ ue 5r ~ 157 (14)
and therefore
ueDi+ l'liDe ano
', =T = - . (15)
ir er pi+ “e or
Similarly, equations (3) and (13) give
3 ~ ) *
dx (Cyy l-'ex) =0 or Iy Tex =H ) (26)
Combining equations (7) and (16) one obtains
* D- D!
i n
BB = u'+xpf + f ? e (17)
i e “i+ p'e
and , ,
R 7 I 4
[T LD+ p.D” 3n
* *
I =T +N = == A - S T S . (18)
Wit pl Wit 1l

The governing equation for the steady state density distribution follows
from equations (3), (15) and (18) as

17 In? 2
u.eDi+ uiDe 1l o ano IJ'eD:'L-i- uiDe o %
TRETR ror T )t T3 TRt O (19)
i Ve Byt My X
The boundary conditions are
n=0 at r =R and finiteat r =0 for all x . (20)

Because of the anode and cathode sheaths, the boundary conditions in the x
direction are not known. As a result of this, it will be assumed that the
number density variation in the axial direction is linear. In this case, the
solution of equation (19) is

n = NJ_ (B 7)(ax + D) (21)

where
. (22)

2 - (b + 1) _ (2.0
R

o = ueDi+ uiDe

10



No, a, b are constants and R 1is the radius of the device. In a given
problem, a and b should be given while A* and No are determined from
the voltage and total current relations which can be written as

L R
U -£ E & , I =J(; 2mre (T, - T Jar (23)

where e 1is the electronic charge. Since on is independent of r ,

equation (17) shows that A¥ may be chosen as

oA () oL g (s r) ¥
= A 5 p.i+p.e TJOBOr (ak)

where Vé, V., are the electron and ion temperatures in electron volts and
A is constafit. With this choice of A¥ , one finds

(ax + b)Eox = ¢ = const. (25)
Normal Mode Analysis

In order to study the stability of the steady state solution, the
perturbations n, and i& will be chosen as

n, = £(r)(ax+b)exp [i(ot + m® + kx)]

E = -U, Ul= g(r)exp [i(wt + m0 + kx)] (26)

with m and k real and ® complex. Substituting equations (26) into
equations (12), one finds

2
’ l_(_l__ E_I_IL O a3 / _2/ . ’
1,elr ar (r dr) = £f] + {¢ - io +'ik ui,eon X Di,e+ 2ika Di’e/(ax+b)
. im ! BE_} £+ D 2 &t 3. (2L (reE )
r "i,e i,e” Tox p‘i,e i,e dr2 ui,e r dr or
e 24 = i 19 dgy _ o
+ M, B i (f%n)] ~ ax+b { Hie [ r dr ( o dr) 2 nog]
an
- 2 4 QL 9-_&". 1 7
i,e i,eB or (no dr) + ik p':'L,e € 3x x ul,enog
on
m 7 [e) .
T M,eM,e” B 3% } : (27

11



Integrating equation (27) with respect to x from 0 to L s Where L is
the length of the device, and introducing the quantities

L .
R - 1 = -
= -:i;_ s n_ = f£ (ax+b)ax , E = c/nx
x
L ERe BoRE
@D = E = w1+ iw, kb = kR , Ex = E
2x) = at(x) + N 3_(8,7) a(r) (28)

equation (27) reduces to

2 2

E R™ d af m 2.2 = .= 2 2

BQRE {[r dr (r dr) N r2 £l + l:(ﬁoR Ty - 1aﬁ)(l * p':'L,eB )
o

+1

2
,‘L- % ”’o E 3
ik E (E+H) - -im 2 L2 (g - §)
OlJ.i X [e] r i X

+

D. 2 2
e —da€ ¥ 2 2d_f} {-.1_9_ gy _m
2ik m H]f +uyS B = pi,e + (r dr) > 2]

i i,e dr2 r dr
on 2
2 2y1d (r "o 2 247y
X @+ “i,eB ) r dr (n or L) x “i,eB 2
o dr
2 - . . R }
+ —
£k o+ ik H+dim 2 ui’eBH (29)
where o
* p
H =qu, o H . (30)
3

Equation (29) does not have a closed form solution and, therefore,
transform techniques will be employed to derive the dispersion relationship.
Since the steady state solution is given in terms of Bessel functions, it is
convenient to transform equation (29) by using a finite Hankel transform.
Thus, letting

p-m p
. 2
p=l [, (8 R)]

R , @ F(B)J (B r)
F(Bj) =lf £(r)r Jﬁ(ﬁjr)dr , f(r) = ;é z

R L(g )3, (B7)
L(B,) = | £(x)r ,(B,0)ar, 4(x) =25 3 —R BB (1)
9o J R pel [J,,,(8R)]

12



where Jm(BjR) =0 for all j ; multiplying equation (29) by er(ﬁjr) and
integrating, one obtains

M
{ 2 2y, 2 22 = =y 2-_"ie *
——i—eRz F(B( + g B)(-BJE+ BE - 1ay+@,) - Ko T3 18 i (5 i)
Bo “ie i
2
Dle p.
+ 2ik 2= H]—lm—‘—p. B(E-H) z A F(rs)
2 2
+ u, B z: D .F }
Hi,e® B P (8)
2 2
= _-_l-_[k +BR(1+u B)-ikoH]L(EaJ.)
a
+ im u BHZ-AL(P-\-T-HE BQZ‘.D L(8 )
r"i,e . P.j \l'pl r'i,e P.j \PPI
p=1
2 2
+Hg B T E L(B_) + : c RGN (32)

ps1 PRI P T L P

where

ar
5 £ I, (Byr) J,(Bsr) 7

A=
P s +1(a R)]

D_. m(ml)JJ(srw () &
P m+l(6 R)T® {
R

+ B, £ T, (Br) 3. (B.r)ar }

28 R
W m+1(aoa)1 L 2B _(5_1‘7 By
2B B, 3, (B,r)
Ey = ————(;——R-ﬁ £r 3, (8, 7) -TE—rT Ty (Byr)ar
+ (1-m)13.pj

15



Cos = Epj = By (33)

The desired dispersion relation is obtained by setting the determinant of
~the infinite system of equations represented by equation (32) equal to zero.

The Stability of a Helical Perturbation

A first approximation to the general dispersion relation can be obtained
by choosing p =J =1 in equation (32), (ref. 9). The resulting expression
may be written as

[(a;z-lml)(l+y/8)+c + ik, ](c o ik, )+

[(ab- 1ai)(l + 8y) + o+ 1k1 ](o i* 1k ) (34)
where
ya,
- _ 2 x 12 2
o, =K +b +5Db,, 0, =-kK +d + <
G, =-kK° +b, + 8yb. , o =5(-k> +d, + &yd_)
le o 1 27 T2e o) 1 2
PRt _ 22 _ 22 )
by = =(B] + BJ)R", by=Dby+ Dy, d)= -BIR - Cpyy dy= -BjK + D)= By

D
i ¥*
-(ko+ n/y/3 All) E, + (-ko+ 2k . + m\/y/5 All) H

kg = .
1
k D, N
k= (k3 -mdy/oy o) E + (k&+2 5, +m 8oy A,) H
ky; = (k- m Jy/3 AJE, Xk, =(kd+m 5 /oy A ) E, (35)
and
p'e 2
1
Equation (34) gives _ 1
wl = - KI [AQEX + AEH] (57)

14



where Al, A.2 and A5 are defined in Appendix C. The requirement for
stability is -
@, >0 , or

(cli°2e+ °1e°21)[ (l+8y)02i+ (l+y/8)02e] + (cl et 0185 )x

[(l+8y)k it (l+y/8)k ] + (g % ekps™ oy 2e)[(1+sy)k1 - (l+§/5)k ] <O0.

(38)

As an application of the above analysis we shall consider the case of
m = =1 which corresponds to a right-handed helical perturbation. In this
case

-8.85, b = -3.68, d;= -6.03 and d,= -5.18 (39)

hence, for the case where H =0 , @ > O and the system is always stable.

2
However, when H is different from zero, the complexity of equation (38)
makes it necessary to resort to numerical calculations to show whether the
system is stable or not. To investigate this, we note that, at the stability
boundary &E = 0 and the equality in equation (38) must hold. Also, the
derivative of the resulting equation with respect to ko must be zero. This
latter requirement follows from a qualitative plot of &b vs. k_ which is

shown in fig. 2. It is evident from fig. 2 that &b =0 and a&b/Bko =0
at the stability boundary.

Expanding equation (38) in powers of ko, one finds

6 4 3 2
agk, + ak + (a3+ c5H Ex)ko + (a2+ c H Ex)ko

+ ko(al+ c,H Ex) t+a+cHE =0 (40)

where 8.5 Bysecey Coy Cyyecey which are given in Appendix C, are

o
functions of vy, H2 5, V /V . Setting the derivative of equation (40) to
zero glves

5 3 2
6a6k0+ hahkb + 5a3kb + 252ko + a8y ),
3c5k0 + 2c2k0+ cq

15



Solution of equation (40), with HE_ given by equation (¥1) gives a relation
between y and k at the crltlcal point for a given H, &, V /V . The

electric field vs. y follows from equation (41) while the frequency follows
from equation (39). The results show that solutions can be obtained only
when HEx >0 . Thus, it is concluded that an instability occurs only when

HEx > 0, which is the Simon-Hoh criterion. Since in & linear Hall

accelerator the axial density gradient and the axial electric field are anti-
parallel over much of the accelerator length, it is concluded that the above
analysis cannot explain the observed instability.

STABILITY ANALYSIS FOR AN OBLIQUE MAGNETIC FIELD
Steady State Solution

The steady state solution for the case of constant applied electric field
and. constant radial and axisl magnetic fields and no axial density gradients
follows from equation (10). Expanding equation (10), one finds that the
equations governing the steady state solution can be written as

1d % 41,

T ar r [“e noEor IE dr +h e e Beronno]} + nog =0 (he)
and

dn

id_{ ¥ __o _ 122 } -

r dr [ lJ':LnoEor + Di dr ui i eronno] + nog 0 (hB)
where

B
3 =X ¥ _ , 2 2 * 2
By = B, ’ Hie © pi,e(1 * ui,eBr)’ Dl, ( p1 e r) ) (44)

The radial component of the electric field can be eliminated by multiplying
equation (L2) by u and equation (43) by p. and adding. The resulting

equation takes the form

d2n dn

o o 2
5 +(1+6r)z7—+ (B +a"r)n =0 (%5)

r

where 5 =
(°-1)By E_,

P = W v )(@rey)(ow)

e(u + ut)
a2 = — *l e ()-(-6)
ik (Vi+ V)

16



Letting

h 1 2 h (1+h )
o] 2 _« o o 1
e A e A e T (0
o o o o Be (l+2h°)2 o 1+ 2h ’
one finds that equation (45) reduces to
M am_
n e +(l-n)aﬁ—-(l+ho)Mo=O (48)

with the boundary conditions n = ng at 1 =0 and n, = O at n = nol.
Since n_ is finite at 7 =0 , the solution of equation (48) is the
confluent hypergeometric function. The boundary condition at 1 = no gives
h0 and, hence, defines 7 and kg « The value of ho is always such that

x% is positive. The parameter no must be specified for the problem to be

completely determined and requires the specification of PR. The analysis
is carried out for a general no but specific values are assigned for
numerical calculations.

The expression for the radial electric field may be derived by
subtracting equations (42) and (43). The resulting expression for E, is

q, dn
E =-1 2 _.p (49)
or n, dr B ox
* * -
D; - D, (14878, )yB, b ery(14E) o)
q‘l =% = ’ S = . 50
wr vt % T Tryres, (Lrey) 5 T v em)

Since B = no/7oR » the following relation exists among the various parameters

of the problem
x  ER 0 (1+8y)(5ty)

E =557 (51)
X V.+ V 2 =
i’ e 70(8 -l)yBx
The number density at the centerline may be evaluated by utilizing
equation (23). However, in this case, e(Fix- Fex) is given by
dn
e(rix- I1ex) = aznyt UYRoBor - %5 a;9 ’ (52)

17



where

az= ey + BB

- 2 ’
q),= e(uin; + Wr! )

ete’/ rtx
a.= e(u®D! - \2")E°E (53)
) iTi e e’ rx
p 2 2=
“i,e- (l + Hi) eBer) :

Normal Mode Analysis

In this case, the perturbations n, and ﬁl are chosen as

n f(r) exp [i(wt + m0 + kx)]

1

i& U, 5 U =g(r)exp [i(wt + mo + kx)] . (54)
The representation shown in equation.(54) represents, essentially, a Fourier
transform with respect to 6, x, and t. Substituting equation (54) into
equation (12) and introducing g new variable £(r) defined by

n (r)a(r) = 55 4(r) - qf(r) , (55)
70

the perturbed equation takes the form

(Di, 1 e) [r dr %5) - fg f] + T [g - o+ 1konul e

(Dg,e 94 :‘L,e)k'2 1 ; “1 e“i er ox(l + qu ) + ik pg ,e“i e i_x oxqe
ZH i, eq2 ox [f * Q= “1 e ] [12k My ,eBer(Dl e ¥ qlpi,e)
ui,e { r dr (r ) - ——'z] R “ﬁ Pr x)k % %; (ﬁg g;g L)

18



dn
- 2 dg 4 ,1 aL
+ u1,eBr [dre dr (n ar z)] * 1kpl eBer e ar n dr L]
-y BB 2 5 = (56)

The coefficients containing the diffusion coefficients and mobilities
may be simplified by utilizing the expression for ¢ from equation (46) and
the definition for Qy from equation (50). The resulting expressions are

1
D’/ + q u{ = &
i,e 1"i,e 2,2 2 2
AbB l+ui,eBr
(57)

l+u? B2§?

D’ i q “q = E i,erx
i,e 17i,e A?ﬁE l+u? B2
o} i,e’r

The quantities B and ¢ have the dimensions of cm™ -1 and sec-l

Choosing B'l as a characteristic length and g'l as a

respectively.
characteristic time, the following dimensionless quantities may be defined:
o
O = — =@ + i
2 "8 T %
£ 7
k
k = z-— (58)
o P7s
- PN
E =—— .
X 7O§ ox

Letting n = y B r and using equations (57) and (58), equation (56) may be
written in the®form

2 2
7o 1 (1L (%) 2 ] u 2 15 45
Xe 1+ 2 B? 7 dn 1 dn 2 2 9 2
o ui,e 7o
2 2= ’
l+4 BB kg _
- ——herx 2 g F tae (2 B2Bq2 W2 PR _1)] F
2 2 o - O X U, i,erx i,erx
1+, B
i,e’r
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r . 2 D
2ip; B B
+ [ qe-lmuler(q23+l)] [ +___,______:2Lezx g‘-f-
o l+u 1
i,e r
2
32 de} (iB&ag-% 4
2 2 1 e n dn d 2
2
ld n_ _o 2 2=2\. 2, = 2 2[d £
x n dn (n dan 2) * Q+ u eBer)koz * p':'L,eBr dn2
dn an
_a_ 1 2 ag 1 0 ]
T dan (n dn L] +i u1,eBerko 2 an dn n, dan 4
- m1 dnO
-1 pi,eBer Y 'n—o" o L} . (59)

Equation (59) represents a pair of coupled complex second order
differential equations with variable coefficients. These equations do not
have a closed form solution and, again, a transform technique will be employed.

It is shown in Appendix A that nlmlej form an orthogonal set with

respect to the weighting function e'ﬂ . Proceeding formally, it is assumed

that the dependent variables can be expanded in terms of the orthogonal set
of confluent hypergeometric functions with the transformed functions defined

as
F (n,) — £(n)
L (by) — 2(n) . (60)
The details of the integral transformation are presented in Appendix A.
Multiplying equation (59) by n'mle-anJ and integrating from O to no ’

an infinite set of algebraic equations in the transformed variables F(hj)
and L(hj) is obtained. Ieaving all definitions to Appendix A, these

equations can be written as

o 2
4 - _ 1+, BB
5 { 2l 2 = DJ F(h)+[_ i o ki
Xo l+“i,eBr p=l 1+ ui,eBr
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+ ik E Ei—f—e- (p:e.L,eBiEx (5 B) - 1] F(n,)
_i;s .o = o *
[_ q,- im ui,eBr(qEBx+ l)] § aij(hp)
. 2“?. eB?-Ex H? eB2
[——+1—é—-—-——§—-—k] chPF(h)+—2-2——-2—szPF(h)}
7o l+ul,eBr =] l+ui e - p=L

= u:{,e{+ z D L(hp) + (l+p. B )k L(h ) + >: A, pL(h )

p-l Jp i,erx‘o p=l
@
— ¥*
+ “2i rBi z B L(h ) + ik u2 (3132}3x L E, L(h)
J p=1 JP p=l JP b
(6]
. - *

-~ imu, BE pil eij(hp)} . (61)

In principle it is possible to eliminate F(h_) (or L(h_)) from the
above equations and obtain an infinite set of equations in L(hpﬁ or F(hp)).

In order for the infinite set of homogeneous equations to have non-trivial
solutions, the determinant of the coefficients, which has infinite rows and
columns, must equal zero. Setting the coefficient determinant equal to zero
yields the general dispersion relation.

Application to a Helical Perturbation

It will be assumed that an approximate form of the dispersion
relation can be obtained by assuming that the infinite determinant can be
approximated by a two by two determinant. Thus, letting p =J =1, the
equations for the electrons and ions can be written in the form

2

¢ -:%— (Al+ iAQ)F(hl) - “i(V:L* iv2)L(hl) =0
o]

and 5 (62)

Y

o . ’ . _
The mathematical steps needed to arrive at equation (62), together with the
definitions of the coefficients of L(h ) and F(h%), are given in Appendix B.

In order for the two simultaneous homogeneous equations to have a non-trivial
solution, the determinant of the coefficients must equal zero. This yields
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the dispersion relation which gives the boundaries between the stable and
unstable regions. Setting the determinant of the coefficients zero, i.e.,

A+ ALy, , -V - iV,
T+ i, » gt v,

"
o

(63)

gives two equations, one from the real part and the other from the imaginary
part. These equations relate the dimensionless wave nuMberz k , the
dimensionless electric field, E , and the dimensionless real part of the
frequency, . In order to obtain the boundary between the stable and un-
stable regiolis, the imaginary part of the frequency, &b’ is set equal to zero.

The equations resulting from setting the real and imaginary parts of

equation (63) equal to zero, with W, =0 are

Mlko + M2ko + Mk + M+ Ex(Mski + Mgk e M)
+ Z()l(M8kO+ M9) =0 (6k)

p) 2 = 3 2
Nk + N K+ N3k0 + W+ Ex(Nsko + Nk + N7ko+ NB)

* &i(méki * M) =0 (65)

The coefficients (M, N) are defined in Appendix B and are functions of
5 ¥, Ex’ and ﬂo

The frequency, &i’ follows from equation (64) as

® = M8k o [Mlk + ka Mk M+

= 2

Ex(M,jkO + Mk + M7)] . (66)
Substituting equation (66) into equation (65) results in a six degree
polynomial in ko s which is

6 = U = 3.3 T
Pk + (P2+ P7Ez)ko + (P3+ P8Ex)ko + (Pu+ P9Ex)ko
(67)
+ (P5+ PloEx)kO + (P6+ PllEx) =0
where
P, = -N9M1
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Py = Mgh, - NoM,- N, )M,

Py = Nolgh Mol - NoM,

By = Mghsh NN, ~ b, - N M
Py = Mg+ Mo, - N M

Pg = MM~ N M,

By = NgMg+ MoN_- NM.

Fg = Mgliph Myllg~ Mgt~ Ny oM
F10= Mgligt Mgll= Ny Mg

F1= Mglg= MMy -

The E_ appearing in equation (67) is not independent of the other
variables of the system, since by using the definitions of Ex » £ , and

Bo » a relation between Ex and E: is derived as

_ (s asey(4E)) 4

B = M, 8(1+8y) E, (69)
where u*

5 = < -0 (T (70)

1

*
and E_ is given by equation (51).

Equation (67) and its derivative with respect to k_ are used to
establish the neutral stability boundary. The simultanedus solution of
these equations establishes the value of y and k at the critical point
for a given B_ , and, from these, the other parame%ers are easily calculated.
The pair of simultaneous non-linear algebraic equations are solved numerically
using the Newton-Raphson method for the case of a right-handed screw (m = -1).

RESULTS AND DISCUSSION

The analysis for a purely radial magnetic field shows that, even in the
presence of both radial and axial density gradients, the perturbation behaves
in accordance with the Simon-Hoh criterion which requires the product of the
axial electric field and the axial density gradient to be positive for
instability. Because the density gradient and the electric field are
antiparallel over much of the accelerator length, it appears thet the origin of
instability may not be dependent on the existence of an axial density gradient.
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In seeking a possible explanation to the observed instability, the
influence of the small but non-vanishing axial component of the magnetic field
in the absence of an axial density gradient is investigated. It is shown that
this can lead to a possible explanation of the observed instability.

The instability is found to exist for a right-handed helix (m = -1) only.
This is in contrast to the left-handed helix required when the axial electric
and magnetic fields are antiparallel as in the case of the positive column.
The right-handed helix for parallel electric and magnetic fields results in

a destabilizing EQ X Bx force in the direction of the containing walls and

Eg b Br drift in the axial direction. This drift in the axial direction is

responsible for the anomalous diffusion observed by the various investigators
(refs. 4, 5, 6, 7, and 8). The instability is present even for small values
of Bx/Br’ however, when B, = O the system is stable in the absence of an

axial density gradient.

The stability boundary is established by solving equation (67)
simultaneously with its derivative with respect to ko to obtain y and k

for specified ﬂ , & and Bx . Upon determination of y and k at the
critical point, the results can be employed to calculate wi and E . The

electric field versus B_ curves given in figs. 3 and 4 show the reglons of
stable and unstable operations. Increasing B, is stabilizing while in-
creasing T, 1s destabilizing to the extent that for some T, between 1.5 and
2 the system becomes completely unstable for & = 10. This is in agreement
with the experimental results of Hess et. al. (ref. 6) where it has been
observed that, in some cases, the discharge becomes unstable almost immediately
when the magnetic field is applied. The axial electric field provides the
driving force for the instability (ref. 12) by rotating the electron helix with
respect to the ion helix thus inducing an Eg which, coupled with B, drives
the particles towards the wall and, coupled with B, results in the anomalous
diffusion in the axial direction. The stabilizing influence of B, results
from inhibiting the rotation of the electron helix relative to the ion helix.
The destabilizing effect of increasing T, i1s difficult to interpret since

it is related to the radius, mggnetic field, and ionization rate.

The frequency variation with Bx is shown in figs. 5 and 6. The
frequency decreases with increasing "8 and T, buE increases with increasing
B,. . A plot of the wave length A = Qn/k versus Bx _is shown in figs. T and
8; it is seen that it is practically independent of Bx and & but increases
with increasing ﬂo .

The critical vg;ue of Yy is plotted versus Ex in figs. 9 and 10. It
is independent of Bx for Bx < 0.1 and increases thereafter but decrease
with increasing & or decreasing 1T, . The system moves from the unstable
to the stable operating region with increasing y . This is a result of the
consideration that, for constant Bx » 1ncreasing y results from an increase
in B, which is stabilizing.
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. The results presented here are in qualitative agreement with the
previously published experimental results (ref. 6). Thus, for T _ = .0l and
B = 1000, the wavelength is approximately six times the radius which is
approximately twice the value of 15 cm given by Hess et al. (ref. 6) and the
frequency agrees favorably with their value of approximately 100 kc/sec.

Using the wavelength of 36 cm and a frequency of 3.6 x 10° radians per second
which is representative of the values at Tp = .0l and & = 1000, the
propagation velocity is found to be of the order of 1.32 x 103 m/sec which is
of the same magnitude (4 x 102 m/sec) given by Hess et al. The propogation
velocity changes with the magnetic field in the ssme manner as the frequency.

Exact agreement between theoretical and experimental results cannot be
expected because the parameters 7o and & are not known for the conditions
of the experiment and the experimental results are for the supercritical
region. Thisisinaddition to the fact that the dispersion relation is some-
what approximate. Neglect of the off diagonal terms in the dispersion
determinant can lead to serious discrepancy if these are of the same order of
magnitude as the diagonal terms. Further investigation is needed to verify
the validity of this approximation. Ivash (ref. 13) has shown that for small
steady state gradients and small degrees of ionization this approximation is
valid for a plasma confined by parallel planes.

CONCLUDING REMARKS

The analysis presented here shows that a right-handed screw type
perturbation becomes stable in a linear Hall current accelerator if the axial
magnetic field is not identically zero. The driving force for the instability
is the axial electric field which rotates the electron helix relative to the
ion helix. This induces an azimuthal electric field which, when coupled with
the axial magnetic field results in a destabilizing force in the direction of
the containing walls and, when coupled with the radial magnetic field, results
in anomalous diffusion in the axial direction. The instability is found to
exist even for very small values of Bx/Br . The variation of the various
parameters with the magnetic field agrees favorably with the experimental
observation. The favorable agreement of this model with experiment suggests
that this mechanism is a possible explanation of the observed instability.

The axial magnetic field is necessary for the instability to exist since,
it is shown that, for the conditions existing in a linear Hall accelerator,
the system is stable in the absence of an axial magnetic field.

North Carolina State University

Raleigh, North Carolina

October 6, 1966
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APPENDIX A

The Confluent Hypergeometric Function and
Related Transformation

Since the steady state solutions for n_ and Eor are expressible in
terms of confluent hypergeometric functions, it is convenient to assume that
the perturbed functions are expressible in terms of an infinite set of con-
fluent hypergeometric functions. It is for this reason that equation (59) is
transformed using an integral transform involving the confluent hypergeometric
function. It is the purpose of this section to demonstrate the orthogonality
of the set of functions used in the transform and carry out the integral
transformation of equation (59).

Consider the following differential equation which, for m = O reduces
to equation (45).

2
L2 4+ L+ @+E-2) n=o0 (14)
dr r

Making transformations similar to that which led to equation (48), the
resulting differential equation is

2
M 11 2o]n
7+ (

an

The solution to equation (2A) is a confluent hypergeometric function given by

- M .=0. (24)

M .=M1+h+ |m] , L+2|ml, n) (34)
mj J
which has the infinite series representation (ref. 13)

® 1+, +|m|+x)r(142)n|) .k

M. = 2 Ilr (L44)

k= FT1+hj+|m] )L (1+k+2 [m|) k.

where I' denotes the Gamma function.

The solution to equation (1A) is then

|m] 3"
n=N"% "M, (54)
with the boundary conditions
n =0 N =o
n=o =1, =M. () =o (64)
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This last condition determines the value of h.. It is now necessary to
investigate the orthogonality of this set.

Consider the differential equation
2

d™n, 1 Efi o t2h. 2
- * (ﬁ -1- 2hj) It (hj+ b - ———ﬂ-,n - ﬂ_2 -)nj- 0. (78)

For any two different value, i and Jj , two equations can be written in the
form
-(l+2h )n dn 2 -(1+2n. )7

) +[- = s (1+2h )+h (1+h MNle J ng=0 (8a)

da
) (Me

-(1+2h M dn, 2 -(1+2n, )7
—) +[- T (1#2h,) + b, (1+h )M]e + n;=0 . (94)

(a5, (ny=h )

J n, and equation (9A) by e ny

N (Me

Multiply equation (8A) by e

subtract the resulting two equations and integrate from o to ﬂ to
obtain

L
o ~ (h,-h.)M ~(1+2h, ) dn, (h.-h.)7 -(1+2h m dn
] [e o ng %ﬁ (Me + Eﬁi -e 97 n, %ﬁ (Me ]dﬂ
o _.~(h. 4 )1

+ 2(hj-hi)j e e d i n;n A1 + (hi-hj)(l+hj+hi)

no -(h.+h, )7
e meMe TR nndl =0 . (104)

)

Integrating the first integral of (10A) by parts twice and combining with the
remaining terms of equation (lOA), the following orthogonality condition is
derived for h, # h, .

3
N (h,+h, )N
J‘o eTfe”d 1 nndl =0 JEL . (114)
o

Substituting the expressions for n from equation (5A), it is seen that

(o]
[ e-nT]2|mIM Mgyl =0 - (124)
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Hence, the functions nlm'th form an orthogonal set in the interval [o,ﬂo]

n

with respect to the weighting function e ' . The same result is obtained
starting with the differential equation

2 2
ar ar m
1 a'n2 + (J.-n)cm - (l+hj + T ) =0 . (134)

It is now assumed that the function f (and g) defined by equation (54)
can be expressed as

00

- niml
£ =1 321 Aijj (144)

with the boundary conditions that f£(0) = £(7_.) = O , where the last
condition determines hj' Multiply equation ?lhA) by

ﬂlm‘e_T‘M

integrate over the interval [o, no] and interchange summation

mk b4
and integration, the result can be expressed as
'Tlo |m‘ _.n @® o] ‘m‘ _.n
{) 1™l e () _an = j}=:l A £ P I0e MMl (154)

Since the integral on the right hand side of (15A) vanishes except when
J = k, the coefficients of the series are determined uniquely. Define the
transformed function F(hk) by

T]O
F(r,) = [ n‘mle'nmmkf(n)dn . (164)

o]
The coefficient Ak is given by
F(n, )

Ay = I, (174)

where

"o olal o1
Ik = I ﬂe mle-nMikdﬂ .

o

Thus the following transform pairs may be defined
o F(h,)M .
Y -}

£(n) = Tl'
=
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il

F(n,) = £ 0 n‘m‘Mmjf(n)dn (18a)
oo L(h,)M .

!l('n) =-n‘m‘ pN L%_n}l
3=l 3

no
Lny) = [ ﬂ|m|e-anj£(ﬂ)dT] .

A few comments are in order concerning the series representation of £(7)
and £(7M) in the interval [o, N.] . The expansion is in terms of an
orthogonal set of characteristic Punctions which satisfy the differential

equation
n:—2§+ (1-11)%% - (l+hj +%2—)¢ =0
where
¢ = nlmIMmJ. (194)
and

#(0) = o(n ) =0 .

The equation may be written in the form

ad
d * 75 * *
—_— + + A.r)9. =0
S @ g + (@ + e
where
* -
P =ﬂeﬂ
q*=-£e"n
n (204)
r* = e-ﬂ
X* = =] h. >0
J J :
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It is noted that the differential equation has homogeneous boundary

conditions and that p*¥ >0, r*>o0, A >0, and g <o for ell 1N in
the interval [o, ﬂo] . “This is @ propet Sturm-Liouville problem and it is
known that all the eigenvalues are positive and real and the characteristic
functions are real (ref. 14). Since the Sturm-Liouville problem is proper

and since p*(ﬂ) , a¥(N), and r*(n) are regular (all derivatives

exist) for o <N <1 » it is known that a formel representation of a bounded
piecewise differentigble function, g(1), in terms of the characteristic
function, ¢,.(7M), converges to g(7) for all M in [o, ﬂO] and converges

to the mean value, %(g(n+) + g(n")), where finite jumps occur. The series
may or may not converge to the value of g(7) at the end points (ref. 1k).

After multiplying equation (59) by T]Imle_anj , the integration is

performed on each term separately. Due to the algebra involved all terms will
not be shown but an example term is shown in detail with the overall results
summarized. Consider the term

ml%n

n (214)
- f 2
T]2

Ll

which becomes

T]O
[ [“‘m‘_le-anj 7 (& - “"m‘—emze-anJf] an -
O

Integrating the first term by parts twice, the above integral becomes

T]o l+h.+ lm]
'T‘ / l+2 m _ ? - i
£ fe M {[Mmj + (———J—Ln l)Mmj _L_ﬂ MmJ]
2 ;. -glw] | 20y Il
LI I e e e Mmj} an .

1

The term in square brackets is identically zero as seen from equation (24)
and the last term can be transformed directly. Hence, the expression (21A$
transforms to

o _ 2-|m|+h,
F(hj) - _c[;o fe-nﬂ‘m‘(% + l)MI;de] +_£ fe T‘T]‘m‘(l 12]2@1' *— J)Mmjd’n . (224)

Substituting the expression for f(7) from equation (18A), the transform for
(214) may be written as
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- f] —_— z F(h
n dﬂ (n ) ) DJP (n,) (234)
P—
where
* * * * *
or = (1-2lm])a._ + (e=|m|+ n,)a, - 2c, -Db. +
o = ¢ |miday, + Im{+ nyday, - 2ejpm Byp * B5p
1
* 1 o 2ml-1 -
ajp = Ip _£ 1 e MmJMmpd'r]

M
* 1 © 2 ‘ml -1 -7 ’
bjp - -—IP 'J; M e MmpMm,jdn

o

*

=L rpRlnl ey w o

g I, mp

x © 2lnl

1 2|m)-2 -1

d. = — ] e M M.dn

ip I, £ mp g

sjp = Kronecker delta = 1, J =P
= 0, JFP

In like manner the other terms of equation (59) transform as follows

a
*

%;— > % a, F(h)

p=l OP P
af

—_— z c. F(h
an p=l JP( )
2 (o]
L ——> 3z s* F(h) (254)
an p=1 9P P

dn
d 1 o}
— (= L >zULh
e wm =z Tphay)
1d O
= = — 2 ——-—->>:ALh
ndn(nodn ) =z ()
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1 dnO @
>>:sL(h) .

— 4
n, dn p=l JP

The integrals which appear, in addition to those in (24A), are

x 1 O 2lm|-1_1 1%
e, == j'n —2M .M_dn
Jp I n, dn “mj mp
P O
Y
o] dn
* 1 2|m| -n 1
s, == [T =— —2 M M ay (26A)
JP IP 5 n, dn “mj mp
n
o] dn
* _1 ° 2fm| n 1 Mo,
up T T n, & mp Mpsdn
P ©
*
Note that the integrands of ejp’ sgp » and ugp take the form o/fo at M, °

Utilizing L°’Hospital’s Rule, it is easily shown that all these functions have
finite limits and the integrals are proper and can be evaluated easily using
standard numerical technigues.

The coefficients of the transformed variable L(h ) and F(h.) are
defined as follows P

c: =5, - |n by
Jp TP maap P
* * * * *

S.. =58, -b. -c. + |nl(lm|l-1)d, + (1+h.- |m])a,

Jp JPp JP JP ‘ (1 \ ) Jp ( J ‘ ‘) JP
* * * *

U. =s,_ =~ imje, = 27A
s = %p ~ ImlegpT yp (278)
* * *

A, =0, + e,
JP 4D JP
* * *

B, =8, -U,
Jp JP JP
* *

E, = . - 5%
JP JP JP

where ng and Egp have been introduced in equation (59) for convenience.

This completes the definitions needed to specify completely the integral
transformation.
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, I% i1s deemed necessary at this point to discuss briefly the numerical
technique used to evaluate the previously defined integrals. Tsbles are
available (ref. 13) for the confluent hypergeometric function byt proved to
be insufficient for our purposes. Therefore, the IBM 1410 digital computer
was used to evaluate Mmj and the previously defined integrals.

In order to evaluate M . for given values of 7 , it is first necessary

to find the value of h; whith satisfies the boundary condition at 7 = Mo
i.e., find the value of "a" for which

M(a,b,no) =0 .

For computational purposes, M(a,b,n) may be written as

ao n
M(a,b,n) =1 + T
Jl k=1 uk
=1+ u+ wu+ AT IR (284)
where
_ atk-1
T b+k-1 kO

Expressing M(a,b,n) in this form is convenient for programming purposes.
First the approximation for "a" to satisfy M(a,b,n ) =0 is given by

(ref. 15)
1‘:2(1 + 'p_)2
- _%1_2_. . (29A)

o

m
it
nic’

Higher approximations are obtained using the Newton-Raphson method, i.e.,

M(an_l’b) T]O)

a = a -

n n-l o)
d3a M(an_l:b:no)
where ( )
a> a n r
3 1
= M(a _1oPsn) = -1 (b) nil —— (304)
and

(a.)r = a(a+l)(a+2)...(a+r-1) .
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The recurrence relation of (30A) converges quite rapidly to the desired
value with eight place accuracy. Knowing "a" , hence h,, it is possible to

tabulate M . to eight significant digits.
the parabolft rule for numerical integration.
integrals for m = -1 are listed below.
n, = 0.01 h = -145.08020
7o = .00345829
Ay = -49999600
¥ = W
a,,= 325,10412
*
¢ = =93255.309
ey, = ~11k0TH. 36
*
4= 140510.45
*
Aj = -140897. 14k
*—
C;1= 1.0183200
¥ =38
E| ;= 389.02915
¥*
U, = -26823.080
N,= 0.5 h = -3.4188112
7, = +1T130261
A, = -k9260900
*
a;l = 6.5098743
¢, = -3h.223242
ey = -145.973875
*
up; = 52.690467
A;l = -60.471480
cfl = .51051540
Dy, = 8.8020439
Up; = -14.497605

Sk

The integrals are evaluated using
The values of the various

hl= -659.86650
7,= +00075830
A= -49999900

*"--
b, = -325.1224k4

*
d;= 186954.80
¥*
811 -386.99251

I, =1.0629 x 1078
B), = -94120.800
D], = -214518.28
5, = -120943.88

h, = -13.738426

1

7, = -0377688)

A = . 49964300
*

b;1= -6.0203897

dj;= 75.005104
s§l= -7.7810131

I =1.32118 x 10™7

B{l= -33.694189
DX = -82.462790
s¥ = -48.191794



h = -2.0
o]
7= 1/3

A= B haRTellTole]

8y, = 5.2666730
c§l=.7.8200512
efl= ~11.752077
uIl= 12.394485

A:l = —16.3L4654)
¥* —

¥y = 50548640
Eil = 4.9630319

U;i = =L.5044607

n) = -7.1957702

7, .0746T74010
xl= . 49860400

¥ = i
by, = 2.772159
dil = 18.919768

sfl =-3.9520591
I, = .010394152

¥*
B, = -7.3195700
D{l = -19. 747102

* = .
Sll = -11.914037
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AFPENDIX B

Dispersion Relation

Consider equation (61) of the text and restrict attention to the
j=p =1 case. Equation (61) can be separated into an equation for the
electrons and one for the ions. The equation for the ions is

2 >
oy A %, - Y OB o
R > t3 5ty  oFy o
A 4 o
[o] o]
a..d
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The equation may be written in the form
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and
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From equation (61), the equation for the electrons is
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The equation may be written in the form
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In order for the two homogeneous equations, (2B) and (6B), to have non-
trivial solutions, the determinant of the coefficients must equal zero,
i.e.,
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which becomes on expanding
AUt Al TV - TVt 1(A V" Aug+ TVt V) =0 (108)
This gives the stability boundary when a, = O . The real part of (10B) leads

to equation (64) of the text and the imaginary part results in equation (65).
The coefficients of these two equations are defined as follows
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This completes the derivation of the dispersion relation.
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APPENDIX C

Coefficients of Equations (39) and (40)
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Figure 1. Schematic of linear Hall current ion accelerator
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Figure 2.

Growth rate, w,, Vversus wave number, ko
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