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STUDY OF INSTAl3ILITlES IN LINEAR HALL 

CURRENT ACCELERATORS 

G. W. Garrison, Jr., H. A. Hassan and R. K. Seals, Jr. 
North Carolina State University 

SUMMARY 

The stability of a linear Hall current accelerator with applied axial 
electric and radial magnetic field 8 against a screw type perturbation is in- 
vestigated. The analysis is based on the ion and electron conservation 
equations and takes into consideration the effects of ionization. It is 
shown that the obser-ved instability cannot be explained when the axial 
magnetic field is identically zero even when the unperturbed potential 
and density distributions have both radial and axial dependence. On the other 
hand, when the axial component of the magnetic field is small, but not zero, 
the column is unstable, in the absence of an axial density gradient, to a 
right-handed helical perturbation (m = -1). The resulting instability, 
which is of the Kadomtsev-Nedospasov type, is analyzed using a normal mode 
analysis. 

INTRODUCTION 

The instabilities observed in linear Hall current accelerators with 
applied axial electric and radial magnetic fields (fig. 1) are typical of a 
number of instabilities observed in devices which employ crossed electric and 
magnetic fields (refs. 1, 2 and 3). In these accelerators, the ions are 
accelerated more or less in the direction of the axial electric field while 
the electron motion in the axial direction is retarded by the radial magnetic 
field as a result of the large differences between the electron and ion radii 
of gyration. Thus, a linear Hall accelerator avoids, to a large extent, the 
space charge limitations of conventional ion rockets. Conservation of mass 
requires the ion density to decrease with increasing velocity. Thus, with 
the possible exception of a region next to the anode, the density gradient 
and the applied axial electric field are antiparallel over much of the 
accelerator length. Also, since the density at the wall is zero (Shottky 
condition), the density and potential gradients in the radial direction are 
not zero. 

'Ihe systems considered by Simon (ref. 1), Hoh (ref. 2), and Morse 
(ref. 3) have no density and potential gradients in the direction of the 



applied magnetic field. Therefore, their results are not directly applicable 
to a linear Hall accelerator. In an attempt to understand the nature of the 
experimentally observed screw instability and associated anomalous diffusion 
(refs - 4, 5, 6, 7, and 8), an analysis is performed in which the steady state 
solution possesses both radial and axial dependence and the axial component 
of the magnetic field is identically zero. A normal mode analysis similar to 
that employed by Johnson and Jerde (ref. 9) shows that the system is unstable 
only when the sign of the product of the axial electric field and the density 
gradientpnd its direction is positive, which is the Simon-Hoh criterion. 
Since in the linear Hall accelerator the axial density gradient in the axial 
electric field are antiparallel over much of the accelerator length, it is 
concluded that such analysis cannot explain the observed instability. 

The experiments of Hess et. al. (ref. 6) showed that the spectrum of 
the instability was strikingly similar to that observed in the positive column 
for magnetic fields above the critical value. Also, the instability was 
found to exist all along the accelerator length. This, and the results of 
the above analysis suggest that the origin of the instability may not be 
dependent on the existence of an axial density gradient but may be a result 
of the small, but non-vanishing axial component of the magnetic field. There- 
fore, an analysis is performed which employs a magnetic field with both 
radial and axial components. As a result of this analysis, it is shown that 
the column is unstable, in the absence of axial density gradients, to a right- 
handed helical perturbation (m = -1). The resulting instability is of the 
Kadomtsev and Nedospasov type (ref. 10). 

SYMBOLS 

a defined in equation (21) 

a . ..a 
0 6 defined in Appendix C 
* 

a. 
JP 

defined in equation (24A) 

A defined in equation (24) 

*1> A29 A3 defined in Appendix C 

A 
Pj 

defined in equation (33) 

A* 
xi 

defined in equation (27A) 

b defined in equation (21) 

bl' b2 defined in equation (33) 

bl... b10 defined in equation (4B) (Appendix B only) 
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b* 
jp 

i5 

=X 

B. 
JP 

B" 
jp 

C 

C . . .C 
0 3 

C* 
jp 

C. 
JP 

C* 
jp 

dl' d2 

d* 
jP 

D 

D 
PJ 

D* 
Pj 

e 
* 

e. 
JP 

3 

E:: 

E 
Pj 

E* 
Pj 

f 

F 

63 

hO 

h. 
J 

defined in equation (24A) 

magnetic flux density 

Bx/B r 
defined in equation (33) 

defined in equation (27A) 

defined in equation (25) 

defined in Appendix C 

defined in equation (24A) 

defined in equation (33) 

defined in equation (27A) 

defined in equation (35) ,, 

defined in equation (24A) 

diffusion coefficient 

defined in equation (33) 

defined in equation (24A) 

electronic charge 

defined in equation (26A) 

electric field 

defined in equation (51) 

defined in equation (33) 

defined in equation (27A) 

density radial perturbation 

integral transform of f 

potential radial perturbation 

defined in equation (47) 

defined in equation (2A) 
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H defined in equation (28) 

H* defined in equation (30) 

I total current 

ii current density 

J Bessel function 

k wave number or Boltzmann constant 

kO 
dimensionless wave nuuiber 

%.'k2iy%ey%e defined in equation (35) 

L 

m 

M 

Ml- Yo 

n 

ii 
X 

No 

Nl- Nlo 

P*,q*,r* 

4 

q1+ 

R 

* 
S. 

JP 
Ssf 

JP 

4 

defined in equation (28) or equation (55) 

integral transform of a or length of the device 

particle mass 

confluent hypergeometric function 

defined in equation (11B) 

particle number density 

defined in equation (28) 

defined in equation (21) 

defined in equation (11B) 

defined in equation (20A) 

defined in equation (14) 

defined in equation (50) 

defined in equation (53) 

cylindrical coordinates 

radius of the device 

defined in equation (26A) 

defined in equation (27A) 



+.- t10 

T 
* 

?P 
u 

4P 
vlJ v2 

V 

-B 

W 

Y 

a 

B 

6 

% 

6. 
JP 

a 

4+2 
6 

defined in equation (8B) 

temperature 

defined in equation (26A) 

electric potential 

defined in equation (27A) 

defined in equation ('i'B) 

temperature in electron volts 

mean velocity 

defined in equation (36) 

defined in equation (46) 

defined in equation (46) 

defined in equation (22) 

defined in equation (31) 

defined in equation (47) 

Gamma function 

particle flux vector 

ratio of mobilities 

defined in equation (50) 

Kronecker delta 

defined in Appendix C 

defined in equation (2B) 

‘5 /‘e 
defined in equation (47) 

defined in equation (3B) 

wave length 



I 

IO 

hY 

defined in equation (47) 

defined in equation (16) 

CL particle mobility 

c;" defined in equation (44) 

V collision frequency 

5 rate of production of-charged particles per electron per sec. 

ali,ule,u2i,u2e defined in equation (35) 

I- l/V 

$1, $2 defined in equation (3B) 

EL frequency of perturbation 

"2 growth rate of perturbation 

Subscripts 

e,i 

0 

1 

r,x,Q 

e 

-B 

I 

If 

refers to electrons and ions, respectively 

refers to steady state 

refers to perturbed state 

refers to radial, axial and azimuthal direction, respectively 

refers to center line 

Superscripts 

vector quantity 

denotes derivative or, use defined in equations (8) and (9) 

use defined in equation (53) 

dimensionless quantity 
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GOVERNING EQUATIONS 

A collision dominated cylindrical plasma immersed in applied electric 
and magnetic fields is considered as a model for the previously described 
device. The frictional coupling between charged and neutral particles does 
not set the netural gas in motion. The degree of ionization is assumed small 
so that electron-ion collisions are not appreciable. The electron and ion 
mean free paths are small compared to the tube radius. The production rate 
of charged particles is assumed to be of the form En , where n is the 
electron number density ati 5 is the number of ioni%ng collis?ons per 
electron per second and depends upon the electron temperature, Te, and 
the neutral gas density. Two stage ionization, volume recombination, and 
electron attachment are neglected. The electron and ion gases are assumed to 
be isothermal at temperatures Te and Ti respectively. 

The governing equations are those of a slightly ionized gas in the 
presence of electric and magnetic fields and may be derived from the moments 
of the Boltzmann equation. The conservation of mass and momentum can be 
written as 

ani,e 
at +V*n G i,e i,e =n. 5 

lye 

+ en i 
Y 

ee + Gi e x 3) - kTi eVni e - ni 
Y Y Y Y 

evi 
Y 

eGi e = 0 
Y 

(1) 

(2) 

where n is the particle number density, e is the electronic charge, 
-B 
E is the electric field, 2 is the magnetic field, $ is the average 
particle velocity, k is Boltzmann's constant, m is the particle mass, 
V is the collision frequency of charged particles with neutral particles, 
and the subscripts i and e refer to ions and electrons respectively. In 
writing these equations it is assumed that the collision frequency, v , is 
large compared to the characteristic frequency of the system thus the inertia 
terms may be neglected. Also, it has been assumed that electron and ion 
temperatures are constants. These temperatures are usually calculated from 
energy considerations. 

Defining the particle flux vector as 
be written in the form 

Ti e 
I 

= n zi ., the equations may 
J 

an 

at +v 
l Ti e = ng 

Y 

(3) 

-+%fin% f. I.L~,~?~,~ x “B - DiyeVn - Tiye = 0 (4) 



where 

CL. 
1,e 

Orn ; 
i,e i,e 

(5) 

D =m kTi,e 
i,e i,e'i,e 

are the mobilities and diffusion coefficients respectively for the ions and 
electrons. In writing the above equations it has been assumed that 
n Zn =n. 

e i 

An explicit expression for the particle flux vector can be obtained by 
taking the dot and cross product of equation (4) with the magnetic field. 
The resulting epxression can be written as 

'i e Y 
= 2 pi ez - 

Y 
Di 

Y 
eVn r cli 

Y eD; Y evn X 2 

+cr ,,,l,,f x “B Y 

where 
P. 

p’ = i,e 
i,e 1 + P; .p , 

D. 
D' = i,e 

i,e 1 + cl'i 
Y 

.B2 

Combining equation (7) with equation (3) and noting that the assumption of 
constant temperatures and mobilities permits Di e to be taken outside 
the differential operators, the final equation i: 

(8) 

(9) 



an bt - ng + pi,eV*G - DiyeV 2 - n + piyeDiye V*(Vn x 5) 

In deriving this result it is assumed that any induced magnetic fie&ds are 
much smaller than the ~~xtternally applied magnetic field, i.e., V x B = 0 . 
Also the condition V(B*B) = 0 
VGLO. 

was employed along with MaxwellJs equation, 
The former justifies the factoring out of pi e and 

Y 
Di e . 

Y 
Equation (10) forms the basis for the stability analysis. A steady state 

solution is first obtained and then the resulting solution is perturbed. 
Thus, letting 

n = no+ "1, %=Zo+$ , 01) 

where n and ; represent the steady state solution, substituting into 
equationO(lO) andOignoring higher order terms, one finds 

a?l 
- - nl 5 + P~,eV*(no~+ yxo) - DiyeV2y i I.L~,~D~,~V*(V~X "B) at 

+ P2 i,ep!,eV* [%(no*i$+ nlzo)l - t-t: eD~,eVg[(Vnl*~)~3 
Y 

(12) 

A normal mode analysis is used to obtain the dispersion relation from 
equation (12) and, hence, the conditions for instability. 

STABILITYANALYSIS FORAPUREDYRADIALMAGNETIC FIELD 

Steady State Solution 

pie steady state for the case of a uniform radial magnetic field can be 
Tbtyl&)from equations (3) and (7) or from equation (10). Using the relation 

re . 
r ir -T er (13) 
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equation (7) gives 

nE - 
Di- De ano 

anO 

0 or pi+ cle ar - =Qar 

and therefore 

r rer = - 
peDi+ piDe ano 

= 
ir cLi+ me ar 

. 

Similarly, equations (3) and (13) give 

& (rix- rex) = 0 or rix- rex = A* . 

Combining equations (7) and (16) one obtains 

nE = A” + 
Di- Di an 

0 
0 ox I(+ CL; CL;+ I.( z- 

and 

r =r ix ex 
+ A” = 

I$ 
A" - 

CILD~+ ClfDL ano 
. 

I$+ CI; I*;+ p; ax 

04) 

05) 

06) 

07) 

08) 

The governing equation for the steady state density distribution follows 
from equations (3), (15) and (18) as 

'eDi+ 'iDe 1 a ! ' a2n 

cli+ CI, 
- (r 2 ) + "":I E:De $ 

F ar + no6 = 0 . 
ie 

(19) 

The boundary conditions are 

no= 0 at r = R and finite at r = 0 for all x . (20) 

Because of the anode and cathode sheaths, the boundary conditions in the x 
direction are not known. As a result of this, it will be assumed that the 
number density variation in the axial direction is linear. In this case, the 
solution of equation (19) is 

where 

no= NoJo(Bor)(ax + b) 

B”, = 
(c’i+ II,> = (2-412 
CL,Di+ hide 

. 
R 

(21) 

(22 > 
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Not a, b are constants and R is the radius of the device. In a given 
problem, a and b should be given while h* and N are determined from 
the voltage and total current relations which can be w%tten as 

L 
U-j-Eox& , 1-s" 2nre (Fix- rex)dr 

0 0 
(23) 

where e is the electronic charge. Since Eox is independent of r , 
equation (17) shows that A* may be chosen as 

A* = A No b;+ p;) 
ve+ vi 

R Jo(@or) (24) 

where V , V 
A is co&ta!it. 

are the electron and ion temperatures in electron volts and 
With this choice of P.* , one finds 

(ax + b)Eox = c = const. (25) 

Normal Mode Analysis 

In order to study the stability of the steady state solution, the 
perturbations nl and ?$ will be chosen as 

nl = f(r)(ax+b)exp [i(cut + m@ + kx)] 

El= -vul, u1 = g(r)exp [i(uvt + m0 + kx)] (26) 

with m and k real and u) complex. Substituting equations (26) into 
equations (l2), one finds 

Diye[$ &y (r g) - “2 f] + {k 
r* 

- iw T'ik di, eEox - k2D; e+ 2ika Di e 
I '( 

ax+b) 
Y Y 

im -- 
r 'i e'; eB Eoxl Y Y 

+ z i,e B2 $ @%,)I 

7 p2 i,e'i,e ' B2&(n 
0 

2 d2f f + P; eD; eB - 
dr2 

h' c Y Y i,e $ $y (rfEor) 

= L {T IL;,, [ : g (rno 2) - f n,g] ax+b 

% 
an 

dr r ik PI e g 2 + P' Y i enogk2 Y 

+i !jP 
anO 

i,eP;,eB ' ax ' l 

(27) 
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Integrating equation (27) with respect to x from 0 to L , where L is 
the length of the device, and introducing the quantities 

H aR %- 
ii 

Y ii x = $ f (ax+b)dx , Eox = c/ix 
X 0 

I+?0 
ii,=- 

5 
=;;1+iii2, ko=kR , Ex= g 

&-) = M(r) + NoJo(Bor) g(r) 

equation (27) reduces to 

- 
PER2 

[g $-(rg) -zf]+[(SER2+ofi 
r* 

- i$)(l + pi,,B2) 

i iko + (E," H*) - k: 

2 

i 
- im ! + B(E,- H*) 

i 

D. 
+ 2iko e H*] f -t v! 

1te i i,e 
m2 - - a] 
r2 

+ (1 + lJ2 i,eB2, $ $ (" 2 4) + P;,~B~ 5 
0 

+ k2 < ikoH + irn: P - 0 i,eBH 

where 

H* P2 
=qPioH . 

5 

(28) 

(29) 

(30) 

Equation (29) does not have a closed form solution and, therefore, 
transform techniques will be employed to derive the dispersion relationship. 
Since the steady state solution is given in terms of Bessel functions, it is 
convenient to transform equation (29) by using a finite Hankel transform. 
Thus, letting 

F(Bj) = F f(r)r Jm(Pjr)dr 
m F(B )J,(B r) 

, f(r) = 2 C 
0 R2 p=l cJm+l(~pR)12 

L(Bj) =.f A(r)r Jm(Bjrh-, J(r) 
2 a L(B )J,(B ‘d 

%- c 
0 R2 p=l CJ,,,(PpR)12 

(31) 
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- 

where Jm(BjR) - 0 for all j ; 
integrating, one obtains 

multiplying equation (29) by rJm(pjr) and 

- 
'Z*'i e 

F(@j)C(l + PfyeB2)(-$R2+ PER2 - ic*?+ ;;2> - k: r i Ei,' k. (Ex+H*) 

I 

D. 
+ 2iko * H*] 

cr. 
- im*p 

i 'i 
i .B(E,- H*) : A .F(Bp) 

Y p=l PJ 

+ P2 i,e B2 $ DpjF(Bp)} 

= + [k: + $R2(1 f P; .B2) - ikoH]L(@j) J 

+WQe BH : A Y .L(Bp) : IJ; eB% DpjL(Bp) 
p=l PJ Y 

2 P; .B2 Y pIl EpjL(Bp) + p:l 'pjL(Bp) 

where 

A= 2 y J (B r> 
‘j [Jm+,(PpR)12 0 m ’ 

Jm(Bjr) F 

2 
D = 

Pj 7 {mb-11 j? 
[: Jm+l(BpR)12 0 

Jm(Bjr)Jm(Bpr) $ 

+ pj F J,(B,r) Jmsl(Bjr)dr } 
0 

B = 2@0 .f Jm(Bpr) J& 
‘j [Jm+l(BpR)12 o 0 0 

Jm(Bjr)a’ 

(32) 

2f3,B. R 
E = 

Jl(Bod 
Pj [ Jtil(BpR)12 ‘0 

f r Jm(apr) m Jm-l(Bjr)dr 

+ (1'm)Bpj 
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C =E -B 
PJ Pj Pj (33) 

me desired dispersion relation is obtained by setting the determinant of 
the infinite system of equations represented by equation (32) equal to zero. 

A first approximation to the general dispersion relation can be obtained 
by choosing P 3 = = 1 in equation (32), (ref. 9). The resulting expression 

The Stability of a Helical Perturbation 

may be written as 

[($ - i$)(l + y/E) + uli + ik-,iI(U2e+ ik2,> + 

[($- i$)(l + 6~) + ule + ikle](u2i+ ik2i) = 0 

where 

2 
'li 

yd2 =-k. +bl+sb2 , u2i =-k: +dl+- 
6 

'le = -k; + bl + 8yb2 , u2e - 6(-k: + dl + Qd,) 

bl = -(82, + 82,,R2, b2= bl+ D 11, dl= -P;R2 - Cll, d2= -SF + Dll- El1 

kli = -(k,+ m JJ& Ex + c-k,' 2ko & 
i 

+m&% A,+* 

%e = (k," - koDi 
m6 6 %l) Ex + <k,s + 2 F + m 6 6 A111 H* 

i 

k 2i = (ko- m m A&J , k2e= (k," + m 6 fi A,l) H , 

and 

s ‘e =- 
pi ’ ’ = pepiB2 . 

Equation (34) gives 
;;1 = - p [A2Ex -I- A3H] 

(34) 

(35) 

(36) 

(37) 
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where Al, A2 and A 3 are defined in Appendix C. The requirement for 
stability is 

;;;!lO, or 

(9i”2e+ ‘leu2i>[: (1+6Y>u2i + (1+~/')~2eI + (Ulik2e+ Ulek2i>x 

C('+'Y)k,,+ (l+Y/')k2eI + (U2ek2i- '2ik2e)C(l+'y)qi- (l+~/')kleI IO l 
CL 

(38) 
As an application of 

m = -1 which corresponds 
case 

the above analysis we shall consider the case of 
to a right-handed helical perturbation. In this 

bl= -8.85, b2= -3.68, dl= -6.03 and d 2 = -5.18 (39) 
hence, for the case where H=O, G2> 0 and the system is always stable. 
However, when H is different from zero, the complexity of equation (38) 
makes it necessary to resort to numerical calculations to show whether the 
system is stable or not. To investigate this, we note that, at the stability 
boundary 5 = 0 and the equality in equation (38) must hold. Also, the 
derivative of the resulting equation with respect to k. must be zero. This 
latter requirement follows from a qualitative plot of z2 vs. f. which is 
shown in fig. 2. It is evident from fig. 2 that G2 = 0 and a(o,/ako = 0 
at the stability boundary. 

Expanding equation (38) in powers of ko, one finds 

ask: + a4ki + (a3+ c3H Ex)kz + (a2+ c2H Ex)k2 
0 

+ ko(al+ clH E,) + ao+ coH Ex = 0 (40) 

where soy al,--, 
cOy cy*'J which are given in Appendix C, are 

functions of y, Setting the derivative of equation (40) to 
zero gives 

HEX = - 
6a6kz+ 4a4kz + 3a3kE + 2a2ko + al 

3c3kE + 2c2ko+ cl 
(41) 
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Solution of equation (40), with HEx given by equation (41) gives a relation 
between y and k. at the critical point for a given H, 6, Ve/V. . The 
electric field vs. 
from equation (39). 

y follows from equation (41) while the frequeicy follows 
The results show that solutions can be obtained only 

when HEx > 0 . Thus, it is concluded that an instability occurs only when 

HEX=, which is the Sinaon-Hoh criterion. Since in a linear Hall 
accelerator the axial density gradient and the axial electric field are anti- 
parallel over much of the accelerator length, it is concluded that the above 
analysis cannot explain the observed instability. 

S!CABILITyAN&YSIS FCRANOEUJQUEMAGNETIC FIELD 

Steady State Solution 

The steady state solution for the case of constant applied electric field 
and constant radial and axial magnetic fields and no axial density gradients 
follows from equation (10). Expanding equation (lo), one finds that the 
equations governing the steady state solution can be written as 

and 

Id r[-PynoEor 
dn 

rar + Dy -$ - P~P~B~~xEoxno] + no9 = 0 

where 
B 

zx B" > t- 
r 

(42) 

(43) 

(44) 

The radial component of the electric field can be eliminated by multiplying 
equation (42) by P: and equation (43) by pz and adding. The resulting 
equation takes the form 

d2n dn 
r o + (1 + Br) $ + (S + dr)no = 0 

dr2 
(45) 

where 

B 
(s2-l)Bx~ Eox 

= 
<Vi' ve>(l+~y)@+Y) 

(46) 
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Letting 

tl 
hOv = r,Br , no = e a2 MO J 1: -2 = 

ho @ho > 1 
(47) 

B 
(1+2ho)2 ' '0 = - 1 + 2ho J 

one finds that equation (45) reduces to 

d2Mo 
9- 

dMO 

Q2 
+ (l-1)) F - (l+ho)Mo = 0 Pa 

with the boundary conditions no- n at 7 = 0 and n =O at v-q,. 

Since no is finite at 7 - 0 J t!e solution of equatyon (48) is the 

confluent hypergeometric function. The boundary condition at 7 = '1, gives 

ho and, hence, defines y. and x', . The value of ho is always such that 

x2 is positive. The parameter rj must be specified for the problem to be 
c:mpletely determined and requires'the specification of SR. The analysis 
is carried out for a general ?jo but specific values are assigned for 
numerical calculations. 

The expression for the radial electric field may be derived by 
subtracting equations (4-2) and (43). IIfie resulting expression for Ear is 

E q1 dno 
or 'a dr - - szEox (49) 

D; - Dt 
91 = * 

CLi + II~ J 92: 6+y+q1+6y) (50) 

Since S = 'I,/Y,R J the following relation exists among the various parameters 

of the problem 

E; = EoxR ~,o+~Ym+Y) 
vi+ ve = 

Y,( 62-‘,Ygx 
(51) 

Ihe number density at the centerline may be evaluated by utilizing 
equation (23). However, in this case, e(rix- rex) is given by 

e(rix- rex) = q3no+ q4noEor - q dnO 

5Fii? 

J (52) 
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where 

(53) 

Normal Mode Analysis 

In this case, the perturbations nl and +%l are chosen as 

nl = f(r) exp Ci(u.3-t + m0 + kx)] 

3 = -vu1 ; u1 = g(r>exp [i(cot + me + kx)] . (54) 

The representation shown in equation (54) represents, essentially, a Fourier 
transform with respect to 8, x, and t. Substituting equation (54) into 
equation (12) and introducing a new variable a(r) defined by 

n,(dd4 = 1 
YEP2 

ab) - qlf(d J 

the perturbed equation takes the form 

("f,, r qlv;Je) [$ &y b g) - 5 f] + f [5 - ice 7 iUoxPTJe 

- (Di,, i qlplJe)k2- i F Cli,e~;,eBrEox(l + $zx) + ik I~~,~P~,~B~~~E~~~J 
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I 

mY 
the 

d (1 dno 
- dr no dr --a,] i ikp2 iJeB3x[2 2 - +] 

dn 
- im p i eBr'x F?F S J 0 

(56) 

The coefficients containing the diffusion coefficients and mobilities 
be simplified by utilizing the expression for 5 from equation (46) and 
definition for ql from equation (50). The resulting expressions are 

D; 
J 
e 7 qlcl; 

J 
e = y&y-- 

1 

hof3 l+$ B2 iJe r 
(57) 

D; e : qlp; e = -&- 
l+~; .B;< 

J 
J J 

hOp 
l+~; .Bz 

J 

The quantities @ and 5. have the dimensions of cm -1 and see-1 
respectively. Choosing ~-1 as a characteristic length and 5-l as a 
characteristic time, the following dimensionless quantities may be defined: 

Letting 7 = y B r and 
written in theOform 

k. = 
& 

Ex = 
B foci 

YOE 
E . ox 

using equations (57) and (58), equation (56) may be 

(58) 



%2- im 'i,e r S, x B( g+l)];+[$- 
0 

i i pf eBzgxko 
J 

-ip 

1 df dv 

Equation (59) represents a pair of coupled complex second order 
differential equations with variable coefficients. These equations do not 
have a closed form solution and, again, a transform technique will be employed. 

It is shown in Appendix A that T) Id, . 

respect to the weighting function e -tl . w 
form an orthogonal set with 

Proceeding formally, it is assumed 
that the dependent variables can be expanded in terms of the orthogonal set 
of confluent hypergeometric functions with the transformed functions defined 
as 

F (hj) ~ f(~> 

L (hj)~‘(s) l (60) 

The details of the integral transformation are presented in Appendix A. 

Multiplying equation (59) by ?j Id eBf)M 
mj 

and integrating from 0 to 7, J 

an infinite set of algebraic equations in the transformed variables 
and L(hj) is obtained. 

F("j > 
Leaving all definitions to Appendix A, these 

equations can be written as 

A2 
-2 

1 
1 + W; .B;Bx 

x' 
? DipF(hp) + [- 

0 
1%; .B; p=l 

TO 

-$+5- l+p'B2 k: 
J i,e r 
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I 
-f ikozx > 

i 
(I-L: 

J 
.BzEx (q2- B) 1 - 1 F(hj) 

im p 

3 $-+i 
2lJ; eqBx J 

0 l+p: .Bz 
J 

= P :D: L(hp) + (l$ .B;gx)kEL(hj) + ! A: L(hp) 
p=l Jp J p=l Jp 

+ p? B2 "c B': L(hp) 7 ikopi .B2rgx 
lJr r pzl Jp J 

p;l E;pL'hp' 

- im ~ i eBrTjx J 
! e)C L(hp)} 

p=l Jp 
. (61) 

In principle it is possible to eliminate F(hp) (or L(h )) from the 
above equations and obtain an infinite set of equations in L(hp P or F(hp)). 
In order for the infinite set of homogeneous equations to have non-trivial 
solutions, the determinant of the coefficients, which has infinite rows and 
columns, must equal zero. Setting the coefficient determinant equal to zero 
yields the general dispersion relation. 

Application to a Helical Perturbation 

It will be assumed that an approximate form of the dispersion 
relation can be obtained by assuming that the infinite determinant can be 
approximated by a two by two determinant. Thus, letting p = j = 1 J the 
equations for the electrons and ions can be written in the form 

-2 
5 $- (4' i%)F(hl) - pi(Vl+ iv2)L(hl) = 0 

and 
hO 

2 Y 
(62) 

E ‘“(Ill+ i$)F($) - P;(V,- iJr2)L(hl) = 0 
x2 

Ihe mathematical steps needed to arrive at equation (62), together with the 
definitions of the coefficients of L(hl) and F(h ), are given in Appendix B. 
In order for the two simultaneous homogeneous equa k- ions to have a non-trivial 
solution, the determinant of the coefficients must equal zero. This yields 
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the dispersion relation which gives the boundaries between the stable and 
unstable regions. Setting the determinant of the coefficients zero, I.e.., 

4+ is ., -Vl- iv2 

= 0 (63) 
I,+ is J +Sr,+ iq2 

gives two equations, one from the real part and the other from the imaginary 
part. These equations relate the dimensionless wave number2 koJ the 
dimensionless electric field, ExJ and the dimensionless real part of the 
frequency, ;i. . In order to obtain the boundary between the stable and un- 
stable regions, the imaginary part of the frequency, ii$J is set equal to zero. 

The equations resulting from sztting the real and imaginary parts of 
equation (63) equal to zeroJ with 0 = 0 are 

k4 + y o M& + Tko + M4+ g,,, + M6ko+ M$ 

+ ;;1(%k,' "9) = 0 (64) 

Nlkz + N2kE + N3ko + N4+ Ex(N5kz + N6kt + N PO+ N8) 

+ u;l(Ngkz + Nlo) = 0 (65) 

The coefficients (M, N) are defined in Appendix B and are functions of 
6, YJ BxJ and 1 l 

0 

The frequency, ;;?, follows from equation (64) as 

,( 
5 

k: + M6ko+ 

Substituting equation (66) into equation (65) 
polynomial in k. J which is 

+Mk +M4+ 30 

?)I . 
results in a six degree 

Plk,6 + (P2+ P7Ez)ki + (P3+ P8Ex)k; + (P,+ PgEx)kE 

+ (P5+ PloEx)ko + (P,+ PllEx) = 0 

where 

Pl = -Ng% 
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p2 - %Nl- Ng%- Nlo% 

p3 - N2%+ "sN1- NgT 

p4 - %N3+ 5JN2- Ng”4- Nlo% 

p5 - %N4+ Ms$- 405 

‘6 = N4”g - Nlo”4 

‘8 = N693+ %N5- Ng”6 

‘9 = “sN7+ MsN6- Ngy- Nlo3 

plo- %N8+ 3N7- N10”6 

‘11= MsN8- ‘109 ’ 

The E appearing in equation (67) is not independent of the other 
variables o? the system, since by using the definitions of Ex J 5 J and 

B, J a relation between E-. and EE is derived as 

where * 
'e fj* = + 

'i 
=%@5) J (70) 

and Ez is given by equation (51). 

Equation (67) and its derivative with respect to k are used to 
establish the neutral stability boundary. The simultane&s solution of 
these equations establishes the value of y and k at the critical point 
for a given B J and, from these, the other parameters are easily calculated. 
The pair of si%ultaneous non-linear algebraic equations are solved numerically 
using the Newton-Raphson method for the case of a right-handed screw (m = -1). 

RESULTS AND DISCUSSION 

The analysis for a purely radial magnetic field shows that, even in the 
presence of both radial and axial density gradients, the perturbation behaves 
in accordance with the Simon-Hoh criterion which requires the product of the 
axial electric field and the axial density gradient to be positive for 
instability. Because the density gradient and the electric field are 
antiparallel over much of the accelerator length, it appears thet the origin of 
instability may not be dependent on the existence of an axial density gradient. 
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In seeking a possible explanation to the observed instability, the 
influence of the small but non-vanishing axial component of the magnetic field 

in the absence of an axial density gradient is investigated. It is shown that 
this can lead to a possible explanation of the observed instability. 

The instability is found to exist for a right-handed helix (m = -1) only. 
This is in contrast to the left-handed helix required when the axial electric 
and magnetic fields are antiparallel as in the case of the positive column. 
The right-handed helix for parallel electric and magnetic fields results in 
a destabilizing Ee x Bx force in the direction of the containing walls and 

Ee x Br drift in the axial direction. This drift in the axial direction is 

responsible for the anomalous diffusion observed by the various investigators 
(refs. 4, 5, 6, 7, and 8). The instability is present even for small values 
of Bx/BrJ however, when Bx = 0 the system is stable in the absence of an 
axial density gradient. 

The stability boundary is established by solving equation (67) 
simultaneously with its derivative with respect to k 
for specified 'lJoJ 6 and Bx . 

to obtain y and k. 
Upon determination 04! y and k at the 

critical point, the results can be employed to calculate $ and' Ez . lhe 
electric field versus B curves given in figs. 
stable and unstable oper&ions. 

3 and 4 show the regions of 
Increasing Br is stabilizing while in- 

creasing T& is destabilizing to the extent that for some To between 1.5 and 
2 the system becomes completely unstable for 6 = 10. This is in agreement 
with the experimental results of Hess &. &. (ref. 6) where it has been 
observed that, in some cases, the discharge becomes unstable almost immediately 
when the magnetic field is applied. The axial electric field provides the 
driving force for the instability (ref. 12) by rotating the electron helix with 
respect to the ion helix thus inducing an Ee which, coupled with Bx drives 
the particles towards the wall and, coupled with Br results in the anomalous 
diffusion in the axial direction. The stabilizing influence of Br results 
from inhibiting the rotation of the electron helix relative to the ion helix. 
The destabilizing effect of increasing 7jo is difficult to interpret since 
it is related to the radius, magnetic field, and ionization rate. 

The frequency variation with g 
frequency decreases with increasing x6 

is shown in figs. 5 and 6. The 
and 1, but increases with increasing 

Br l 
A plot of the wave length A = 2n/k versus Bx -is shown in figs. 7 and 

8; it is seen that it is practically independent of B and 6 but increases 
with increasing 'Q, . X 

The critical value of y is plotted versus zx in figs. 9 and 10. It 
is independent of zx for z < 0.1 and increases thereafter but decrease 
with increasing 6 or decreaging 'Ilo . The system moves from the unstable 
to the stable operating region wit& increasing y . This is a result of the 
consideration that, for constant Bx J increasing y results from an increase 
in Br which is stabilizing. 
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'he results presented here are in qualitative agreement with the 
previously published experimental results (ref. 6). Thus, for ?j - .Ol and 
6 - 1000, the wavelength is approximately six times the radius wh%h is 
approximately twice the value of 15 cm given by Hess et al. (ref. 6) and the A- 
frequency agrees favorably with their value of approximately 100 kc/see. 
Using the wavelength of 36 cm and a frequency of 3.6 x 102 radians per second 
which is representative of the values at To = .Ol and 6 = 1000, the 
propagation velocity is found to be of the order of 1.32 x 103 m/set which is 
of the same magnitude (4 x 103 m/see) given by Hess et al --• The propogation 
velocity changes with the magnetic field in the ssme manner as the frequency. 

Exact agreement between theoretical and experimental results cannot be 
expected because the parameters ?'jo and 6 are not known for the conditions 
of the experiment and the experimental results are for the supercritical 
region. Thisisinaddition to the fact that the dispersion relation is some- 
what approximate. Neglect of the off diagonal terms in the dispersion 
determinant can lead to serious discrepancy if these are of the same order of 
magnitude as the diagonal terms. F'urther investigation is needed to verify 
the validity of this approximtion. Ivash (ref. 13) has shown that for small 
steady state gradients and small degrees of ionization this approximation is 
valid for a plasma confined by parallel planes. 

CONCLUDING FEMAFKS 

The analysis presented here shows that a right-handed screw type 
perturbation becomes stable in a linear Hall current accelerator if the axial 
magnetic field is not identically zero. The driving force for the instability 
is the axial electric field which rotates the electron helix relative to the 
ion helix. This induces an azimuthal electric field which, when coupled with 
the axial magnetic field results in a destabilizing force in the direction of 
the containing walls and, when coupled with the radial magnetic field, results 
in anomalous diffusion in the axial direction. The instability is found to 
exist even for very small values of s/B, . 'Ibe variation of the various 
parameters with the magnetic field agrees favorably with the experimental 
observation. The favorable agreement of this model with experiment suggests 
that this mechanism is a possible explanation of the observed instability. 

!&e axial magnetic field is necessary for the instability to exist since, 
it is shown that, for the conditions existing in a linear. Hall accelerator, 
the system is stable in the absence of an axial magnetic field. 

North Carolina State University 

Raleigh, North Carolina 

October 6, 1966 
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APPENDIXA 

The Confluent Rypergeometric Function and 
Related Transformation 

Since the steady state solutions for n and E are expressible in 
terms of confluent hypergeometric functions, ?t is con%nient to assume that 
the perturbed functions are expressible in terms of an infinite set of con- 
fluent hypergeometric functions. It is for this reason that equation (59) is 
transformed using an integral transform involving the confluent hypergeometric 
function. It is the purpose of this section to demonstrate the orthogonality 
of the set of functions used in the transform and carry out the integral 
transformation of equation (59). 

Consider the following differential equation which, for m = 0 reduces 
to equation (45). 

d2n - + (/3 + $) 2 + (cx2+ E - 
dr2 

5) n=O (a 

Making transformations similar to that which led to equation (48), the 
resulting differential equation is 

l)$- 
(l+h.+ Irn\) 

rl Ma=o* 
@A) 

The solution to equation (2A) is a confluent hypergeometric function given by 

M mj= M(l + hj+ Iml J 1 + 2lml J 7) (3A) 

which has the infinite series representation (ref. 13) 

(ID r(l+h.+(m(+k)r(l+2jm\) k 
M 

mj 
= c % k~ r(l+hj+lml)I'(l+k+2jml) k. 

where r denotes the Gamma function. 

The solution to equation (IA) is then 

n = qlmlehjqM 
mj 

with the boundary conditions 

n=o 1'0 
n=o rl = 1, * M,.$lo, = 0 
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This last condition determines the value of h.. It is now necessary to 
investigate the orthogonality of this set. J 

Consider the differential equation 

l+!Zh. 
m2 - 2hj) 2 + (hj+ h: - y - - )nj= 0 . 
J-l2 

(7A) 

For any two different value, i and j J two equations can be written in the 
form 

d 
dll 

d 
drl 

Multiply 

subtract 
obtain 

-@+2hj)l dn. 
h 

m2 
++c-T- (1+2hj)+hj(l+hj)T]e 

-(1+2hj)q 
n.= 0 

J w 

(W 
-(1+2hi)r\ dni 

-$iC-$ (l+2hi) + hi(l+hi)v]e 
-(l+2hi)'ll 

n.= 0 . (9A) 

equation (8A) by e 
(h j -hi ) r) 

n 
(hi-';)TI 

i and equation (9A) by e nj J 

the resulting two equations and integrate from o to 'Q, to 

(hi-hj )q -(1+2hi) dni 
e nj & (qe ar) _ ethjehi)lini & (qe-(1+2hj)q $)]aTI 

rl0 
+ 2(hj-hi) s e 

-lJ$hj+hi )rl 

0 
ninjdT + (hi-hj)(l+hj+hi) 

-(hj+hi)q 
ninjdq = 0 . (lOA) 

Integrating the first integral of (lOA) by parts twice and combining with the 
remaining terms of equation (lOA), the following orthogonality condition is 
derived for hi# h. . 

J17 

s 
0 e-qe(hj+hi)TI 

j#i . (=A) 
0 

ninjdT = 0 J 

Substituting the expressions for n from equation (5A), it is seen that 

90 

r 
e-Tq2 I4 M M.d?l=O . 

'b mJ ml (=A) 
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Hence, the functions T lrnlM mj form an orthogonal set in the interval [o,~,] 

with respect to the weighting function e -T . 'Ihe same result is obtained 
starting with the differential equation 

m2 - (l+hj f $f = 0 . 03A) 

It is now assumed that the function f (and g) defined by equation(54) 
can be expressed as 

04A) 

with the boundary conditions that f(0) = f(v ) = 0 
condition determines h.. 

J 
Multiply equation @A) b; 

where the last 

7jlm'e-'1,, J integrate over the interval [oJ %] and interchange summation 

and integration, the result can be expressed as 

7 'Qlmle-Tf(T))M d?l = (% A mk p$lrnleB'M 
j=l jo 

M drJ 05A) 
0 mjmk l 

Since the integral on the right hand side of (15A) vanishes except when 
. = k, the coefficients of the series are determined uniquely. Define the 
transformed function F(hk) by 

qO 
F(hk) = j- q Irnle-'M f('il)d'Tl mk . 

0 
WA) 

The coefficient % is given by 

Fbk) 
%=-q- (17A) 

where n 

. 

Thus the following transform pairs may be defined 

f(q) = ,I4 ; F(h$)MLQ 
j=l 3 
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WA) 

qO 
L(hj) rn r TjlrnleB% .a(q)dq . 

‘0 aI 

A few comments are in order concerning the series representation of f(l) 
and J?,(T) in the interval [o, 'll ] . The expansion is in terms of an 
orthogonal set of characteristic knctions which satisfy the differential 
equation 

m2 
- (1 + hj + T)" = 0 

where 

and 

e(o) = @(T-j,) = 0 . 

The equation may be written in the form 

& (P* 2) + (q*+ XJ')Qj = 0 

where 

p* =Tje -r( 

2 
q*=-+e -1 

(19A) 

&‘OA) 
* 

r = emq 

A; = -1 - 
hj’” l 
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It is noted that the differential equation has homogeneous boundary 

conditions and that p* > oJ 
the interval [o, 7 ] . 

r*>oJ hY>o and q* < o for all ?J in 
-This is a propeG ?%&kLiouville problem and it is 

known that all the gigenvalues are positive and real and the characteristic 
functions are real (ref. 14). Since the Sturm-Liouville problem is proper 
and since P*(q) J q*(y), and r*(T) are regular (all derivatives 
exist) for o<lJ<TJ J it is known that a formal representation of a bounded 
piecewise differentiable function, g(y), in terms of the characteristic 
function, aj(?l), converges to g(l) for all ll in [oJ vo] and converges 
to the mean value, *(g(YtJ+) + g('f/-)), where finite jumps occur. The series 
may or may not converge to the value of g(v) at the end points (ref. 14). 

After multiplying equation (39) by ?l Imle-$ . J the integration is 
performed on each term separately. Due to the algebra involved all terms will 
not be shown but an example term is shown in detail with the overall results 
summarized. Consider the term 

which becomes 

Integrating the first term by parts twice, the above integral becomes 

'Qj] 

- ($ + "ML + ( }dq , 

The term in square brackets is identically zero as seen from equation (2A) 
and the last term can be transformed directly. Hence, the expression (21A I 
transforms to 

rl0 

F(hj > - r 
‘0 

fe-qqIrnI(g + l)MLdl + p fe-'qlml(l-21m( + 
2-lml+h. 

.O v2 
n, ;L)MtidIj . (22A) 

Substituting the expression for f(l) from equation (18A), the transform for 
(21A) may be written as 
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where 

D" jp = (l-2 I4 qp + (2-lrn/+ hj)aJp - 2cJp- biP + Sjp 

-It 1 
‘IO 

a. = 
JP $ f qlm .I -1,+-i 

‘0 
MaMrnpd'I 

q0 
b*+Jq 2 Imb-le'T)M M' 

mP mj 
dq 

jp po 

-> "c D* F(hp) 
p=l jp 

lm\-le-$j M' dq 
mp mj 

11 
o d*=+fv ‘lrnl -2e-T)M M 

jp p*. mp mj 
dy 

6. = Kronecker delta = 1, j = p 
JP 

= 0 J SPP 

In like manner the other terms of equation (59) transform as follows 

- -> "c a? F(hp) f 
rl p=l Jp 

df - -> ; C: F(hp) 
drl p=l Jp 

d2f - -> "c S: F(hp) 
dq2 psi Jp 

-> "c LJ: L(hp) 
p=l Jp 

-> "c A: L(hp) 
prl Jp 

@3A) 

@5A) 
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1 dno -- 
no dv 

R -> : s" L(hp) 
p=l Jp 

. 

The integrals which appear, in addition to those in (24A), are 

* 1 
q0 

ejp =q o s 
12 Iml-1,-V 

dn 
Lo,, .M dT) 
no d'l w w 

* 1 vO 

'jp =q o s 
#4,-9 1 dnO 

n 0 dq 
- MaMmpd’l @W 

q21mle-9 1 dn 
-+4 M'.dq 

no d? w WI 

Note that the integrands of e* * 
jp' 'jp ' 

and u* 
32 

take the form o/o at 7, . 

Utilizing L'Hospital's Rule, it is easily shown that all these functions have 
finite limits and the integrals are proper and can be evaluated easily using 
standard numerical techniques. 

The coefficients of the transformed variable L(hp) and F(hp) are 
defined as follows 

c* =6 jP jp - Imlayp - byp 

s” = 6 - b* 
jp jp jp - 'jp 

* + Iml(\m\-l)d~p + (l+hj- \ml)aIp 

U* = s* - \mle* - u* 
jp jp jp JP 

A" 
JP 

B* = s* - u* 
JP jp jP 

E* jp 
=2c* * 

jp- ‘jp 

(WA) 

* where B 
jP 

and E* 
jp 

have been introduced in equation (59) for convenience. 

This completes the definitions needed to specify completely the integral 
transformation. 
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! Ii is deemed necessary at this point to discuss briefly the numerical 
technique used to evaluate the previously defined integrals. Tables are 
available (ref. 13) for the confluent hypergeometric function but proved to 
be insufficient for our purposes. Therefore, the IBM 1410 digital computer 
was used to evaluate M 

mj 
and the previously defined integrals. 

In order to evaluate M . for given values of q , it is first necessary 
to find the value of he wh%!h satisfies the boundary condition at 7 = 9, , . &.e., find the value o I "a" for which 

M(a,byrlo) = 0 . 

For computational purposes, M(a,b,q) may be written as 

M(a,b,v) '1 + C R uk 
n=l k=l 

= 1 + ul+ u1u2+ u1u2u3+ . . . 

where 

(28~4) 

a+k-1 
?k=b+k-l ii l 

Expressing M(a,b,T) in this form is convenient for programming purposes. 
First the approximation for llaU to satisfy M(a,b,qo) = o is given by 
(ref. 15) 

b Yf2(i + 5,' 
a =- - 

0 2 
4q0 

. (29A) 

Higher approximations are obtained using the Newton-Haphson method, I.e., 

Mbn-lA~o) 
a=a n n-l - 

& M(an,lyb,~o) 

where 

& Mb P-l &do (3OA) 

and 

(a), = a(a+l.)(a+2)...(a+r-1) . 
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The recurrence relation of (30A) converges quite rapidly to the desired 
value with eight place accuracy. Knowing lla" , hence h., it is possible to 
tabulate M . to eight significant digits. 
the parabol%! rule for numerical integration. 

!I!he integrals are evaluated using 
The values of the various 

integrals for m = -1 are listed below. 

70 = 0.01 hO = -145.08020 hl= -659.86650 
70 = .oo34582g Yl= .00075830 

IO 
= l 4gggg6oo x1= l 49999900 

cl= 325.10412 
* 

cll= -93255 ' 309 

* 
bll= -325.l2244 

* 
dll= 186954.80 

* * 
ell= -114074.36 sll= -386.9951 

<1= 140510.45 Ik = 1.0629 x 10 -8 

41= -140897.44 Bll * = -94120.800 

cT1= 1.0183200 D1l * = -214318.28 
* 

Eli= 389.02915 
* 

sll = -120943.88 
* 

ull = -26823.080 

fl0 
= 0.5 hO = -3.4188112 

70 = .17130261 

IO 
= .4gz6ogoo 

a;1 = 6.5098743 

c11 = -34.223242 
e* = 11 -45. gn@i'5 
uT1 = 52.690467 

4"1 = -60.471480 
C* = 11 .51051540 
DTl = 8.8020439 

try1 = -14.497605 

hl = -13.738426 

Yl = .03776884 

I1 = .4gg643oo 

d&= 75.005104 
s* = 
11 -7.7810131 

3s = 1.32118 x 10'3 

EL= -33.694189 
J)* t 

11 -82.462790 
szl= -48.191794 
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ho= -2.0 

Yo= l/3 
x =.47uto400 

0 

cl= 3.2666730 
+-7.820031~ 
eS= -11.752077 
L&= 12.394485 

41 = -16.346544 
C" 11 = .50548640 

h = 1 -7.1957702 
5= .074674010 
x 

1 
= .4g8604oo 

* 
bll = -2.7721594 

d* = 11 18.919768 

ST1 1-3 l 9520591 

!k 

= .0103g4152 

* 
Bll = -7.3195700 
D* = 11 -19.747102 
S" = 11 -11.914037 
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APPEXDIXB 

Dispersion Relation 

Consider equation (61) of the text and restrict attention to the 
j=p=l case. Equation (61) can be separated into an equation for the 
electrons and one for the ions. The equation for the ions is 

+ Tzal16 

G+Y(l+ij: > 
E, + i 

[ - c-$ + (($YBx - 6 - YQ ;y;+g) 

X 

mGall(Qx+ 1) 43 
Ex + 

2CllYZx 

6+Yo+Sx) 
sty k. I} F(hl) = 

CI’ -C - Dll+ All- 6 XB 
2 11 + (1 +fj"z,kE 

-i yExE1l 
6 k. + Gxell m ]} 

The equation may be written in the 

2 

2 (lli+ iJ&, )F(%) 
0 

where 

b k2 r1,= bl+ b2Ex- 3 o 

%= b4kozx- b5Ex- il + b6ko 

$1 = b7+ b8kE 

$2 =bk+b g 0 10 

Lb1 > 

form 

(1B) 

- qJI,- iJr2)L(hl) = 0 6-1 

(3B) 
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and 

91 A2 
blP 6+y 

- +$ + cl1 YSll 

YO 

- +;;,+x 
TO 

b2 Sal1 3 
6+Yo+Sx) 

sY$x 

b3L WY 

b4 = 

%YEx- S-Y$x 

~Y(l+~xl 

b5 = 
m6all /775 (q2Bx+1) 

6+Y(l+2x) 

2BxYCll 
b6= St-y 

b7 = -Dll+ %l' 6 YB 11 

b10 = mByell /iG 

From equation (61)’ the equation for the electrons is 

(4B) 

'r', D A2 

F -I 11 +o +c11.;, + 
1+6y r', 7o 

2 
0 

l+@? 
x k2 +i 

C 

6(1+8YZx(Bx-s,)) k ~ 

1+6y 0 
-$+ 

1+6y(1+Sx) 
ox 
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mQbQx+l) /G 
l+sY(l+3x) 

Ex + 2cllByBx k 
1+sy 0 II F(hl) = 

4 -l 61Dll - ?l%l - ++W+; + %6yBll 

+i bl WExEllko - mQ'& /G ]} Lb11 . 

The equation may be written in the form 

2 (4' i%)F(hl) - lqvl+ 
0 

where 
4= tl- t2Ex- t3kE 

%= t4kozx- t5 Ex- + t6ko 

2 vl= t7- t8ko 

=t k v2 go - t10 

and Q 

iV2)L(hl) = 0 

Dll 5 
tl=- +- + 

F&L+; Eysll 
1+6y r2 

YO 
2 +1+6y 

0 

t2 = 
al1% 

1+6y(l+<) 

l+SySx 

t3 = 1+6y 

t4 = 
b-CBx~Y (Bx- 92 >+ 1) 

1+6y(l+3x) 

(5B) 

(6B) 

(7B) 

w 
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t5 = 

t6 = 

t8 = 

t9 = 

m8all(Qx+ 1) /F 
1+6y(l+3x) 

2Bx6YCll 
1+6y 

50 =m Be 4 x 11 /5 

In order for the two homogeneous equations, (2B) and (6B), to have non- 
trivial solutions, the determinant of the coefficients must equal zero, 

(9B) 

(lo@ 

4+ i+ , -Vl- iv2 . 

I 

= 0 
pi+ i% 9 'J'i+ W2 

which becomes on expanding 

-4"1- Y2+ Y1- n, V + iUyh2- %lfl+ 711V2+ $Vl> = 0 l 2 

This gives the stability boundary when I$ = 0 . The real part of (10B) leads 
to equation (64) of the text and the imaginary part results in equation (65). 
The coefficients of these two equations are defined as follows 

5 = t3b8+ b3t8 

%. = t3b7- tlb8- t6bg- blt8- b3t7- b6tg 

M3 = %ob6- b1ot6 

M4= blt7- tlb7 

5 
= t2b8- t4bg- b2t8- b4tg 
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MS= t5bg- tgblO+ b4t10+ b5tg 

M7 = t2b7+ t5blo+ b2t7- b5tlo 

93 = bg+ tg 

M9 =blO- t10 

Nl= -t3bg- tbbs- tgb3- b&j 

N2' -t3b10+ %ob3 

N3 = tlb9- 
t6b7+ bltg+ bgt7 

N4= tlblo- blt10 

N5= -t4b8- b4t8 

N6= t5bB+ b5ts 

N7= -t2bg- t4b7+ b2tg+ b4t7 

N8= -t2b10+ t5b7 - b2t10- b5t7 

N9 
= b8+ t8 

Nlo= b7- t7 

This completes the derivation of the dispersion relation. 

(=B) 



mFENDIx c 

Coefficients of Equations (39) and (40) 

A-y (1+ 8) [kz (1%~) - dl(l+y) - Y d2b + A)] 

A2=(1+6) Cm m +l (k: - dl- Y d2) - Y d2(8-l)kol 

A3= -kz [l + Ee + 6(1+Di) + l+S] - k: rn@ %l [Ei- Ee+ 6 - $ 

l+ij 
+ ko[dl(l + Ee + 6(1+Di)) + Y d2 ('(l"iI + y) 

+ (bl+ Yb2)(1+6)I + m fi + [<‘ii- Ee)(dl+ Yd2) + bl (6 - i)I 

a6= (l+S)2(l+y) 

a4= (l+S)2[(l+y>H2 - (l+y)(2dl+ bl+ yb2 + d,yA) - Yd2(y+A)] 

a3 
= -m&E q,(l+S)d: [D,(l+Ey) - iTe(l+y/G) - 2(6 - $1 

a2= (1+8) { (1+6)(l+y)Cdlbl+ Ydlb2 + Ybld2A + y2b2d21 

+ (1+8)Cdl(l+y) + 3rd2(y+a)l~dl+ bl+ yb2+ d2d 

- H2 [yd2(G-1)((1+Di)(1+6y) - (l+Ee > (l+y/@ > + (l+@ (l+y$+ yb2 > 

- m2y pl (6-l)(Di- Ee + 6 - $1) 

al - -kom & %,(l+S)I.? {dl[y(-G(l+Ei) + $ (l+Ee)) + Ee-Ei] 

+ yd2 [-iji(At8y) + Eel" + $$ - y 

+ (- 82;1) tb$+d + JTb21) 
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a 
0 

= -(l+@ { (1+8)Cdl(l+d + STd2b+~~l[dlbl+ ydlb2+ Jrald2+ y2b2 d21 

+m 2&6-l)Y p1 C(D,- 6)(dl+ yd2) + bl (6 - ~)I} 

c3 = m /3 (1+N2 O+Y)%~ 

c2 = (l+S)2(6-l)[(l+y)yd2- m2y AT,1 

c1 = -m /% A-&+@2[yd2(y+A) + d#+dl 

cO = m2( 1+6)2(6-l)(dl+ yd2)y AF1 

where 

1 =- - 
A 8 1+6 , Di = 5 B1+6 jj l+ti 

lsy e=z Y c = Vi/V . e 
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Figure 1. Schematic of linear Hall current ion accelerator 
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Figure 2. Growth rate, G2, versus wave number, k 0 
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Figure 3. Electric field versus magnetic field ratio, 6 = 10 
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Figure 4. Electric field versus magnetic field ratio, 'Ijo= .Ol 
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Figure 3. Frequency versus magnetic field ratio, 6 - 10 
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Figure 6. Frequency versus magnetic field ratio, 'fj,= .Ol 
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Figure 7. Wavelength versus magnetic field ratio, 6 = 10 
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Figure 8. Wavelength versus magnetic field ratio, IJo= .Ol 
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Figure 9. Critical magnetic field versus magnetic field ratio, 6 = 10 
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Figure 10. Critical magnetic field versus mgnetic field ratio, To= .Ol 
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