141 research outputs found

    Understanding the dynamics of Toll-like Receptor 5 response to flagellin and its regulation by estradiol

    Get PDF
    © 2017 The Author(s). Toll-like receptors (TLRs) are major players of the innate immune system. Once activated, they trigger a signalling cascade that leads to NF-ΰ B translocation from the cytoplasm to the nucleus. Single cell analysis shows that NF-ΰ B signalling dynamics are a critical determinant of transcriptional regulation. Moreover, the outcome of innate immune response is also affected by the cross-talk between TLRs and estrogen signalling. Here, we characterized the dynamics of TLR5 signalling, responsible for the recognition of flagellated bacteria, and those changes induced by estradiol in its signalling at the single cell level. TLR5 activation in MCF7 cells induced a single and sustained NF-k B translocation into the nucleus that resulted in high NF-k B transcription activity. The overall magnitude of NF-k B transcription activity was not influenced by the duration of the stimulus. No significant changes are observed in the dynamics of NF-k B translocation to the nucleus when MCF7 cells are incubated with estradiol. However, estradiol significantly decreased NF-k B transcriptional activity while increasing TLR5-mediated AP-1 transcription. The effect of estradiol on transcriptional activity was dependent on the estrogen receptor activated. This fine tuning seems to occur mainly in the nucleus at the transcription level rather than affecting the translocation of the NF-k B transcription factor

    Regulation of Human Formyl Peptide Receptor 1 Synthesis: Role of Single Nucleotide Polymorphisms, Transcription Factors, and Inflammatory Mediators

    Get PDF
    The gene encoding the human formyl peptide receptor 1 (FPR1) is heterogeneous, containing numerous single nucleotide polymorphisms (SNPs). Here, we examine the effect of these SNPs on gene transcription and protein translation. We also identify gene promoter sequences and putative FPR1 transcription factors. To test the effect of codon bias and codon pair bias on FPR1 expression, four FPR1 genetic variants were expressed in human myeloid U937 cells fused to a reporter gene encoding firefly luciferase. No significant differences in luciferase activity were detected, suggesting that the translational regulation and protein stability of FPR1 are modulated by factors other than the SNP codon bias and the variant amino acid properties. Deletion and mutagenesis analysis of the FPR1 promoter showed that a CCAAT box is not required for gene transcription. A −88/41 promoter construct resulted in the strongest transcriptional activity, whereas a −72/41 construct showed large reduction in activity. The region between −88 and −72 contains a consensus binding site for the transcription factor PU.1. Mutagenesis of this site caused significant reduction in reporter gene expression. The PU.1 binding was confirmed in vivo by chromatin immunoprecipitation, and the binding to nucleotides −84 to −76 (TTCCTATTT) was confirmed in vitro by an electrophoretic mobility shift assay. Thus, similar to many other myeloid genes, FPR1 promoter activity requires PU.1. Two single nucleotide polymorphisms at −56 and −54 did not significantly affect FPR1 gene expression, despite differences in binding of transcription factor IRF1 in vitro. Inflammatory mediators such as interferon-γ, tumor necrosis factor-α, and lipopolysaccharide did not increase FPR1 promoter activity in myeloid cells, whereas differentiation induced by DMSO and retinoic acid enhanced the activity. This implies that the expression of FPR1 in myeloid cells is developmentally regulated, and that the differentiated cells are equipped for immediate response to microbial infections

    Reliability of home CPAP titration with different automatic CPAP devices

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CPAP titration may be completed by automatic apparatus. However, differences in pressure behaviour could interfere with the reliability of pressure recommendations. Our objective was to compare pressure behaviour and effective pressure recommendations between three Automatic CPAP machines (Autoset Spirit, Remstar Auto, GK 420).</p> <p>Methods</p> <p>Sixteen untreated obstructive sleep apnea patients were randomly allocated to one of the 3 tested machines for a one-week home titration trial in a crossover design with a 10 days washout period between trials.</p> <p>Results</p> <p>The median pressure value was significantly lower with machine GK 420 (5.9 +/- 1.8 cm H<sub>2</sub>O) than with the other devices both after one night and one week of CPAP titration (7.4 +/- 1.3 and 6.6 +/- 1.9 cm H<sub>2</sub>O). The maximal pressure obtained over the one-week titration was significantly higher with Remstar Auto (12.6 +/- 2.4 cm H<sub>2</sub>O, Mean +/- SD) than with the two other ones (10.9 +/- 1.0 and 11.0 +/- 2.4 cm H<sub>2</sub>O). The variance in pressure recommendation significantly differed between the three machines after one night and between Autoset Spirit and the two other machines after 1 week.</p> <p>Conclusion</p> <p>Pressure behaviour and pressure recommendation significantly differ between Auto CPAP machines both after one night and one week of home titration.</p

    Long-Term IGF-I Exposure Decreases Autophagy and Cell Viability

    Get PDF
    A reduction in IGF-I signaling has been found to increase lifespan in multiple organisms despite the fact that IGF-I is a trophic factor for many cell types and has been found to have protective effects against multiple forms of damage in acute settings. The increase in longevity seen in response to reduced IGF-I signaling suggests that there may be differences between the acute and chronic impact of IGF-I signaling. We have examined the possibility that long-term stimulation with IGF-I may have a negative impact at the cellular level using quiescent human fibroblasts. We find that fibroblast cells exposed to IGF-I for 14 days have reduced long-term viability as judged by colony forming assays, which is accompanied by an accumulation of senescent cells. In addition we observe an accumulation of cells with depolarized mitochondria and a reduction in autophagy in the long-term IGF-I treated cultures. An examination of mice with reduced IGF-I levels reveals evidence of enhanced autophagy and fibroblast cells derived from these mice have a larger mitochondrial mass relative to controls indicating that changes in mitochondrial turnover occurs in animals with reduced IGF-I. The results indicate that chronic IGF-I stimulation leads to mitochondrial dysfunction and reduced cell viability

    Neuregulin Promotes Incomplete Autophagy of Prostate Cancer Cells That Is Independent of mTOR Pathway Inhibition

    Get PDF
    Growth factors activating the ErbB receptors have been described in prostate tumors. The androgen dependent prostate cancer cell line, LNCaP, expresses the ErbB-1, ErbB-2 and ErbB-3 receptor tyrosine kinases. Previously, it was demonstrated that NRG activates ErbB-2/ErbB-3 heterodimers to induce LNCaP cell death, whereas, EGF activates ErbB-1/ErbB-1 or ErbB-1/ErbB-2 dimers to induce cell growth and survival. It was also demonstrated that PI3K inhibitors repressed this cell death suggesting that in androgen deprived LNCaP cells, NRG activates a PI3K-dependent pathway associated with cell death.In the present study we demonstrate that NRG induces autophagy in LNCaP cells, using LC3 as a marker. However, the autophagy induced by NRG may be incomplete since p62 levels elevate. We also demonstrated that NRG- induced autophagy is independent of mammalian target of rapamycin (mTOR) inhibition since NRG induces Akt and S6K activation. Interestingly, inhibition of reactive oxygen species (ROS) by N-acetylcysteine (NAC), inhibited NRG-induced autophagy and cell death. Our study also identified JNK and Beclin 1 as important components in NRG-induced autophagy and cell death. NRG induced elevation in JNK phosphorylation that was inhibited by NAC. Moreover, inhibitor of JNK inhibited NRG-induced autophagy and cell death. Also, in cells overexpressing Bcl-2 or cells expressing sh-RNA against Beclin 1, the effects of NRG, namely induction of autophagy and cell death, were inhibited.Thus, in LNCaP cells, NRG-induces incomplete autophagy and cell death that depend on ROS levels. These effects of NRG are mediated by signaling pathway that activates JNK and Beclin 1, but is independent of mTOR inhibition

    Factors Contributing to the Biofilm-Deficient Phenotype of Staphylococcus aureus sarA Mutants

    Get PDF
    Mutation of sarA in Staphylococcus aureus results in a reduced capacity to form a biofilm, but the mechanistic basis for this remains unknown. Previous transcriptional profiling experiments identified a number of genes that are differentially expressed both in a biofilm and in a sarA mutant. This included genes involved in acid tolerance and the production of nucleolytic and proteolytic exoenzymes. Based on this we generated mutations in alsSD, nuc and sspA in the S. aureus clinical isolate UAMS-1 and its isogenic sarA mutant and assessed the impact on biofilm formation. Because expression of alsSD was increased in a biofilm but decreased in a sarA mutant, we also generated a plasmid construct that allowed expression of alsSD in a sarA mutant. Mutation of alsSD limited biofilm formation, but not to the degree observed with the corresponding sarA mutant, and restoration of alsSD expression did not restore the ability to form a biofilm. In contrast, concomitant mutation of sarA and nuc significantly enhanced biofilm formation by comparison to the sarA mutant. Although mutation of sspA had no significant impact on the ability of a sarA mutant to form a biofilm, a combination of protease inhibitors (E-64, 1-10-phenanthroline, and dichloroisocoumarin) that was shown to inhibit the production of multiple extracellular proteases without inhibiting growth was also shown to enhance the ability of a sarA mutant to form a biofilm. This effect was evident only when all three inhibitors were used concurrently. This suggests that the reduced capacity of a sarA mutant to form a biofilm involves extracellular proteases of all three classes (serine, cysteine and metalloproteases). Inclusion of protease inhibitors also enhanced biofilm formation in a sarA/nuc mutant, with the combined effect of mutating nuc and adding protease inhibitors resulting in a level of biofilm formation with the sarA mutant that approached that of the UAMS-1 parent strain. These results demonstrate that the inability of a sarA mutant to repress production of extracellular nuclease and multiple proteases have independent but cumulative effects that make a significant contribution to the biofilm-deficient phenotype of an S. aureus sarA mutant

    Duloxetine Inhibits Effects of MDMA (“Ecstasy") In Vitro and in Humans in a Randomized Placebo-Controlled Laboratory Study

    Get PDF
    This study assessed the effects of the serotonin (5-HT) and norepinephrine (NE) transporter inhibitor duloxetine on the effects of 3,4–methylenedioxy­methamphetamine (MDMA, ecstasy) in vitro and in 16 healthy subjects. The clinical study used a double-blind, randomized, placebo-controlled, four-session, crossover design. In vitro, duloxetine blocked the release of both 5-HT and NE by MDMA or by its metabolite 3,4-methylenedioxyamphetamine from transmitter-loaded human cells expressing the 5-HT or NE transporter. In humans, duloxetine inhibited the effects of MDMA including elevations in circulating NE, increases in blood pressure and heart rate, and the subjective drug effects. Duloxetine inhibited the pharmacodynamic response to MDMA despite an increase in duloxetine-associated elevations in plasma MDMA levels. The findings confirm the important role of MDMA-induced 5-HT and NE release in the psychotropic effects of MDMA. Duloxetine may be useful in the treatment of psychostimulant dependence

    Crucial role of calbindin-D28k in the pathogenesis of Alzheimer's disease mouse model

    Get PDF
    Calbindin-D28k (CB), one of the major calcium-binding and buffering proteins, has a critical role in preventing a neuronal death as well as maintaining calcium homeostasis. Although marked reductions of CB expression have been observed in the brains of mice and humans with Alzheimer disease (AD), it is unknown whether these changes contribute to AD-related dysfunction. To determine the pathogenic importance of CB depletions in AD models, we crossed 5 familial AD mutations (5XFAD; Tg) mice with CB knock-out (CBKO) mice and generated a novel line CBKO·5XFAD (CBKOTg) mice. We first identified the change of signaling pathways and differentially expressed proteins globally by removing CB in Tg mice using mass spectrometry and antibody microarray. Immunohistochemistry showed that CBKOTg mice had significant neuronal loss in the subiculum area without changing the magnitude (number) of amyloid β-peptide (Aβ) plaques deposition and elicited significant apoptotic features and mitochondrial dysfunction compared with Tg mice. Moreover, CBKOTg mice reduced levels of phosphorylated mitogen-activated protein kinase (extracellular signal-regulated kinase) 1/2 and cAMP response element-binding protein at Ser-133 and synaptic molecules such as N-methyl-D-aspartate receptor 1 (NMDA receptor 1), NMDA receptor 2A, PSD-95 and synaptophysin in the subiculum compared with Tg mice. Importantly, this is the first experimental evidence that removal of CB from amyloid precursor protein/presenilin transgenic mice aggravates AD pathogenesis, suggesting that CB has a critical role in AD pathogenesis
    corecore