574 research outputs found
Optical Morphologies of Millijansky Radio Galaxies Observed by HST and in the VLA FIRST Survey
We report on a statistical study of the 51 radio galaxies at the millijansky
flux level from the Faint Images of the Radio Sky at Twenty centimeters,
including their optical morphologies and structure obtained with the Hubble
Space Telescope. Our optical imaging is significantly deeper (~2 mag) than
previous studies with the superior angular resolution of space-based imaging.
We that find 8/51 (16%) of the radio sources have no optically identifiable
counterpart to AB~24 mag. For the remaining 43 sources, only 25 are
sufficiently resolved in the HST images to reliably assign a visual
classification: 15 (60%) are elliptical galaxies, 2 (8%) are late-type spiral
galaxies, 1 (4%) is an S0, 3 (12%) are point-like objects (quasars), and 4
(16%) are merger systems. We find a similar distribution of optical types with
measurements of the Sersic index. The optical magnitude distribution of these
galaxies peaks at I~20.7+-0.5 AB mag, which is ~3 mag brighter than the depth
of our typical HST field and is thus not due to the WFPC2 detection limit. This
supports the luminosity-dependent density evolutionary model, where the
majority of faint radio galaxies typically have L*-optical luminosities and a
median redshift of z~0.8 with a relatively abrupt redshift cut-off at z>~2. We
discuss our results in the context of the evolution of elliptical galaxies and
active galactic nuclei.Comment: 20 pages, 8 figures, 51 galaxy images, and 5 tables. Uses
emulateapj.cls and natbib.sty. Accepted to ApJS. High resolution images are
available upon reques
Time separation as a hidden variable to the Copenhagen school of quantum mechanics
The Bohr radius is a space-like separation between the proton and electron in
the hydrogen atom. According to the Copenhagen school of quantum mechanics, the
proton is sitting in the absolute Lorentz frame. If this hydrogen atom is
observed from a different Lorentz frame, there is a time-like separation
linearly mixed with the Bohr radius. Indeed, the time-separation is one of the
essential variables in high-energy hadronic physics where the hadron is a bound
state of the quarks, while thoroughly hidden in the present form of quantum
mechanics. It will be concluded that this variable is hidden in Feynman's rest
of the universe. It is noted first that Feynman's Lorentz-invariant
differential equation for the bound-state quarks has a set of solutions which
describe all essential features of hadronic physics. These solutions explicitly
depend on the time separation between the quarks. This set also forms the
mathematical basis for two-mode squeezed states in quantum optics, where both
photons are observable, but one of them can be treated a variable hidden in the
rest of the universe. The physics of this two-mode state can then be translated
into the time-separation variable in the quark model. As in the case of the
un-observed photon, the hidden time-separation variable manifests itself as an
increase in entropy and uncertainty.Comment: LaTex 10 pages with 5 figure. Invited paper presented at the
Conference on Advances in Quantum Theory (Vaxjo, Sweden, June 2010), to be
published in one of the AIP Conference Proceedings serie
Brownian bridges to submanifolds
We introduce and study Brownian bridges to submanifolds. Our method involves
proving a general formula for the integral over a submanifold of the minimal
heat kernel on a complete Riemannian manifold. We use the formula to derive
lower bounds, an asymptotic relation and derivative estimates. We also see a
connection to hypersurface local time. This work is motivated by the desire to
extend the analysis of path and loop spaces to measures on paths which
terminate on a submanifold
Evolution in the Disks and Bulges of Group Galaxies since z=0.4
We present quantitative morphology measurements of a sample of optically
selected group galaxies at 0.3 < z < 0.55 using the Hubble Space Telescope
(HST) Advanced Camera for Surveys (ACS) and the GIM2D surface
brightness--fitting software package. The group sample is derived from the
Canadian Network for Observational Cosmology Field Redshift survey (CNOC2) and
follow-up Magellan spectroscopy. We compare these measurements to a similarly
selected group sample from the Millennium Galaxy Catalogue (MGC) at 0.05 < z <
0.12. We find that, at both epochs, the group and field fractional bulge
luminosity (B/T) distributions differ significantly, with the dominant
difference being a deficit of disk--dominated (B/T < 0.2) galaxies in the group
samples. At fixed luminosity, z=0.4 groups have ~ 5.5 +/- 2 % fewer
disk--dominated galaxies than the field, while by z=0.1 this difference has
increased to ~ 19 +/- 6 %. Despite the morphological evolution we see no
evidence that the group environment is actively perturbing or otherwise
affecting the entire existing disk population. At both redshifts, the disks of
group galaxies have similar scaling relations and show similar median
asymmetries as the disks of field galaxies. We do find evidence that the
fraction of highly asymmetric, bulge--dominated galaxies is 6 +/- 3 % higher in
groups than in the field, suggesting there may be enhanced merging in group
environments. We replicate our group samples at z=0.4 and z=0 using the
semi-analytic galaxy catalogues of Bower et al (2006). This model accurately
reproduces the B/T distributions of the group and field at z=0.1. However, the
model does not reproduce our finding that the deficit of disks in groups has
increased significantly since z=0.4.Comment: Accepted for publication in MNRAS. 20 pages, 17 figure
Recommended from our members
Neglect patients exhibit egocentric or allocentric neglect for the same stimulus contingent upon task demands
Hemispatial Neglect (HN) is a failure to allocate attention to a region of space opposite to where damage has occurred in the brain, usually the left side of space. It is widely documented that there are two types of neglect: egocentric neglect (neglect of information falling on the individual?s left side) and allocentric neglect (neglect of the left side of each object, regardless of the position of that object in relation to the individual). We set out to address whether neglect presentation could be modified from egocentric to allocentric through manipulating the task demands whilst keeping the physical stimulus constant by measuring the eye movement behaviour of a single group of neglect patients engaged in two different tasks (copying and tracing). Eye movements and behavioural data demonstrated that patients exhibited symptoms consistent with egocentric neglect in one task (tracing), and allocentric neglect in another task (copying), suggesting that task requirements may influence the nature of the neglect symptoms produced by the same individual. Different task demands may be able to explain differential neglect symptoms in some individuals
The luminosity function of field galaxies
Schmidt's method for construction of luminosity function of galaxies is
generalized by taking into account the dependence of density of galaxies from
the distance in the near Universe. The logarithmical luminosity function (LLF)
of field galaxies depending on morphological type is constructed. We show that
the LLF for all galaxies, and also separately for elliptical and lenticular
galaxies can be presented by Schechter function in narrow area of absolute
magnitudes. The LLF of spiral galaxies was presented by Schechter function for
enough wide area of absolute magnitudes: . Spiral galaxies differ slightly by
parameter . At transition from early spirals to the late spirals parameter in
Schechter function is reduced. The reduction of mean luminosity of galaxies is
observed at transition from elliptical galaxies to lenticular galaxies, to
early spiral galaxies, and further, to late spiral galaxies, in a bright end, .
The completeness and the average density of samples of galaxies of different
morphological types are estimated. In the range the mean number density of all
galaxies is equal 0.127 Mpc-3.Comment: 14 page, 8 figures, to appear in Astrophysic
Visual, Motor and Attentional Influences on Proprioceptive Contributions to Perception of Hand Path Rectilinearity during Reaching
We examined how proprioceptive contributions to perception of hand path straightness are influenced by visual, motor and attentional sources of performance variability during horizontal planar reaching. Subjects held the handle of a robot that constrained goal-directed movements of the hand to the paths of controlled curvature. Subjects attempted to detect the presence of hand path curvature during both active (subject driven) and passive (robot driven) movements that either required active muscle force production or not. Subjects were less able to discriminate curved from straight paths when actively reaching for a target versus when the robot moved their hand through the same curved paths. This effect was especially evident during robot-driven movements requiring concurrent activation of lengthening but not shortening muscles. Subjects were less likely to report curvature and were more variable in reporting when movements appeared straight in a novel “visual channel” condition previously shown to block adaptive updating of motor commands in response to deviations from a straight-line hand path. Similarly, compromised performance was obtained when subjects simultaneously performed a distracting secondary task (key pressing with the contralateral hand). The effects compounded when these last two treatments were combined. It is concluded that environmental, intrinsic and attentional factors all impact the ability to detect deviations from a rectilinear hand path during goal-directed movement by decreasing proprioceptive contributions to limb state estimation. In contrast, response variability increased only in experimental conditions thought to impose additional attentional demands on the observer. Implications of these results for perception and other sensorimotor behaviors are discussed
Agronomic Management of Indigenous Mycorrhizas
Many of the advantages conferred to plants by arbuscular mycorrhiza (AM) are associated to the ability of AM plants to explore a greater volume of soil through the extraradical mycelium. Sieverding (1991) estimates that for each centimetre of colonized root there is an increase of 15 cm3 on the volume of soil explored, this value can increase to 200 cm3 depending on the circumstances. Due to the enhancement of the volume of soil explored and the ability of the extraradical mycelium to absorb and translocate nutrients to the plant, one of the most obvious and important advantages resulting from mycorrhization is the uptake of nutrients. Among of which the ones that have immobilized forms in soil, such as P, assume particular significance. Besides this, many other benefits are recognized for AM plants (Gupta et al, 2000): water stress alleviation (Augé, 2004; Cho et al, 2006), protection from root pathogens (Graham, 2001), tolerance to toxic heavy metals and phytoremediation (Audet and Charest, 2006; Göhre and Paszkowski, 2006), tolerance to adverse conditions such as very high or low temperature, high salinity (Sannazzaro et al, 2006), high or low pH (Yano and Takaki, 2005) or better performance during transplantation shock (Subhan et al, 1998). The extraradical hyphae also stabilize soil aggregates by both enmeshing soil particles (Miller e Jastrow, 1992) and producing a glycoprotein, golmalin, which may act as a glue-like substance to adhere soil particles together (Wright and Upadhyaya, 1998).
Despite the ubiquous distribution of mycorrhizal fungi (Smith and Read, 2000) and only a relative specificity between host plants and fungal isolates (McGonigle and Fitter, 1990), the obligate nature of the symbiosis implies the establishment of a plant propagation system, either under greenhouse conditions or in vitro laboratory propagation. These techniques result in high inoculum production costs, which still remains a serious problem since they are not competitive with production costs of phosphorus fertilizer. Even if farmers understand the significance of sustainable agricultural systems, the reduction of phosphorus inputs by using AM fungal inocula alone cannot be justified except, perhaps, in the case of high value crops (Saioto and Marumoto, 2002). Nurseries, high income horticulture farmers and no-agricultural application such as rehabilitation of degraded or devegetated landscapes are examples of areas where the use of commercial inoculum is current. Another serious problem is quality of commercial available products concerning guarantee of phatogene free content, storage conditions, most effective application methods and what types to use. Besides the information provided by suppliers about its inoculum can be deceiving, as from the usually referred total counts, only a fraction may be effective for a particular plant or in specific soil conditions. Gianinazzi and Vosátka (2004) assume that progress should be made towards registration procedures that stimulate the development of the mycorrhizal industry.
Some on-farm inoculum production and application methods have been studied, allowing farmers to produce locally adapted isolates and generate a taxonomically diverse inoculum (Mohandas et al, 2004; Douds et al, 2005). However the inocula produced this way are not readily processed for mechanical application to the fields, being an obstacle to the utilization in large scale agriculture, especially row crops, moreover it would represent an additional mechanical operation with the corresponding economic and soil compaction costs.
It is well recognized that inoculation of AM fungi has a potential significance in not only sustainable crop production, but also environmental conservation. However, the status quo of inoculation is far from practical technology that can be widely used in the field. Together a further basic understanding of the biology and diversity of AM fungi is needed (Abbott at al, 1995; Saito and Marumoto, 2002).
Advances in ecology during the past decade have led to a much more detailed understanding of the potential negative consequences of species introductions and the potential for negative ecological consequences of invasions by mycorrhizal fungi is poorly understood. Schwartz et al, (2006) recommend that a careful assessment documenting the need for inoculation, and the likelihood of success, should be conducted prior to inoculation because inoculations are not universally beneficial.
Agricultural practices such as crop rotation, tillage, weed control and fertilizer apllication all produce changes in the chemical, physical and biological soil variables and affect the ecological niches available for occupancy by the soil biota, influencing in different ways the symbiosis performance and consequently the inoculum development, shaping changes and upset balance of native populations. The molecular biology tools developed in the latest years have been very important for our perception of these changes, ensuing awareness of management choice implications in AM development.
In this context, for extensive farming systems and regarding environmental and economic costs, the identification of agronomic management practices that allow controlled manipulation of the fungal community and capitalization of AM mutualistic effect making use of local inoculum, seem to be a wise option for mycorrhiza promotion and development of sustainable crop production
Wind-tunnel Investigation of a Ram-jet Missile Model Having a Wing and Canard Surfaces of Delta Plan Form with 70 Degrees Swept Leading Edges : Force and Moment Characteristics of Various Combinations of Components at a Mach Number of 1.6
Fitting the integrated Spectral Energy Distributions of Galaxies
Fitting the spectral energy distributions (SEDs) of galaxies is an almost
universally used technique that has matured significantly in the last decade.
Model predictions and fitting procedures have improved significantly over this
time, attempting to keep up with the vastly increased volume and quality of
available data. We review here the field of SED fitting, describing the
modelling of ultraviolet to infrared galaxy SEDs, the creation of
multiwavelength data sets, and the methods used to fit model SEDs to observed
galaxy data sets. We touch upon the achievements and challenges in the major
ingredients of SED fitting, with a special emphasis on describing the interplay
between the quality of the available data, the quality of the available models,
and the best fitting technique to use in order to obtain a realistic
measurement as well as realistic uncertainties. We conclude that SED fitting
can be used effectively to derive a range of physical properties of galaxies,
such as redshift, stellar masses, star formation rates, dust masses, and
metallicities, with care taken not to over-interpret the available data. Yet
there still exist many issues such as estimating the age of the oldest stars in
a galaxy, finer details ofdust properties and dust-star geometry, and the
influences of poorly understood, luminous stellar types and phases. The
challenge for the coming years will be to improve both the models and the
observational data sets to resolve these uncertainties. The present review will
be made available on an interactive, moderated web page (sedfitting.org), where
the community can access and change the text. The intention is to expand the
text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics &
Space Scienc
- …
