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Abstract

We introduce and study Brownian bridges to submanifolds. Our method involves
proving a general formula for the integral over a submanifold of the minimal heat
kernel on a complete Riemannian manifold. We use the formula to derive lower
bounds, an asymptotic relation and derivative estimates. We also see a connection to
hypersurface local time. This work is motivated by the desire to extend the analysis
of path and loop spaces to measures on paths which terminate on a submanifold.
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Introduction

Brownian motion is a stochastic process naturally associated to any Riemannian man-
ifold. The distance between Brownian motion and a submanifold was studied by the
author in [41], using an inequality for the Laplacian of the distance function based on
Jacobi field comparison. The Brownian bridge is given by conditioning Brownian mo-
tion to hit a fixed point at a fixed positive time. We extend this concept by replacing the
fixed point with a submanifold. There has so far been very little research on this topic,
even if the ambient space is Euclidean, although such processes have appeared in the
context of Wiener measure approximation, as in [36].

Suppose that M is a complete and connected Riemannian manifold of dimension m

and that N is a closed embedded submanifold of M of dimension n ∈ {0, . . . ,m − 1}.
Assume for this introduction that M is compact. Denote by pM the heat kernel on M

and define

pMt (x,N) :=

∫
N

pMt (x, y) d volN (y) (1)

where volN denotes the measure on N induced by the embedding. For the case in which
N is a point, volN is a delta measure and the integral reduces to a pointwise evaluation.
The integrated heat kernel will be the central object of study. Some examples of it are
given in Section 1. Following [41], it can be identified as the time derivative of a mean
hypersurface local time. A comparison theorem for this object is included in Subsection
4.1.

In Section 2, denoting by X(x) a Brownian motion on M starting at x, we fix T > 0

and prove that if t ∈ [0, T ) then for a bounded FX(x)
t -measurable random variable F we

have

E [F |XT (x) ∈ N ] =
E
[
pMT−t(Xt(x), N)F

]
pMT (x,N)

.
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This gives rise to a diffusion over the time interval [0, T ) starting at x and arriving in N
at time T , with time-dependent infinitesimal generator

1

2
4+∇ log pMT−t(·, N).

We call this a Brownian bridge to a submanifold. To show that it is a semimartingale on
[0, T ] we prove the gradient estimate

‖∇ log pMt (x,N)‖2 ≤ C
(

1

t
+
n

t
log

1

t
+
d2(x,N)

t2

)
and derive a Hessian estimate as corollary. These estimates are given in Section 6
by Theorem 6.2 and Corollary 6.4, respectively. We prove them using the method of
Stroock [37], the inductive element of which had previously been discovered by Cheng,
Li and Yau [7]. Our estimates generalize the main theorem of Engoulatov [13] and the
gradient and Hessian estimates of Hsu [21], who considered only the one point case.

To prove the gradient estimate we require a suitable lower bound on pMt (x,N). In
Section 3 we define rN (·) := d(·, N) and introduce the diffusion on M starting at x with
time dependent generator

1

2
4− rN

T − t
∂

∂rN

where ∂
∂rN

denotes differentiation in the radial direction. We call such a process a
Fermi bridge. It is an example of a submanifold bridge process, by which we mean a
Brownian motion with drift which arrives in a submanifold at a fixed positive time. This
terminology was introduced by Ndumu [26]. In Section 4 we prove the main result of
this article, Theorem 4.1, which in terms of a Fermi bridge X̂(x) yields the formula

pMT (x,N) = (2πt)−
(m−n)

2 exp

[
−d

2(x,N)

2t

]
lim
t↑T

E

[
exp

[∫ t

0

rN (X̂s(x))

T − s

(
dAs + dLs

)]]
.

Here dA is an absolutely continuous random measure, which takes into account the
geometry of M in between N and the cut locus, while dL is a singular continuous
random measure, which takes in to account the effect of the cut locus itself. If N is a
point, this yields a formula for the heat kernel itself.

Theorem 4.1 is proved using a modification of the method of Elworthy and Tru-
man [12]. Elworthy and Truman’s heat kernel formula and Ndumu’s extension of it
to integrated heat kernels [26–29] typically require some invertibility of the exponen-
tial map and so cannot be applied directly to manifolds with a cut locus. The problem
of extending these formulae to manifolds with a cut locus was posed to the author by
Xue-Mei Li. Theorem 4.1 provides this extension and can also be adapted to include
a drift and a potential, in analogy with the Schrödinger equation for a magnetic field,
considered by Watling [45–47].

The formulae in [12], [26] and [45] are all expressed in terms of a stochastic process
called the semiclassical bridge. The semiclassical bridge will be used to obtain derivat-
ive formulae for kernels of Schrödinger operators in a future publication by the author
and Xue-Mei Li. It is similar to the Fermi bridge but has an additional drift which de-
pends on the Jacobian determinant of the exponential map. This additional drift results
in the appearance of a potential function which is difficult to understand geometrically.
The random measure dA can, on the other hand, be written explicitly in terms of Jacobi
fields.

This allows us in Section 5 to use Theorem 4.1 and the estimate on A given in [41]
to deduce a lower bound on the integrated heat kernel. This bound is stated in Theorem
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5.1. It is used to prove an asymptotic relation, stated in Theorem 5.2, and in Section 6
it is used to prove the desired gradient and Hessian estimates.

Although for this introduction we have assumed thatM is compact, this is not always
necessary. In fact, we will usually only require some control on the Laplacian of the
distance function. Geometric conditions for this were given in [41]. In particular, it
was proved there that if there exists a function κ : [0,∞) → [0,∞) such that one of the
following conditions is satisfied off the union of N and its cut locus:

(C1) n ∈ {0, . . . ,m−1}, the sectional curvature of planes containing the radial direction
is bounded below by −κ2(rN ) and the absolute value of the principal curvature of
N is bounded by a constant Λ ≥ 0;

(C2) n = 0 and the Ricci curvature in the radial direction is bounded below by −(m −
1)κ2(rN );

(C3) n = m − 1, the Ricci curvature in the radial direction is bounded below by
−(m − 1)κ2(rN ) and the absolute value of the mean curvature of N is bounded
by a constant Λ ≥ 0;

then the inequality

1

2
4r2

N ≤ (m− n) + (nΛ + (m− 1)κ(rN )) rN

holds off the cut locus pointwise and, by [35], on the whole of M in the sense of distri-
butions. Conditions of this type are used to deduce Theorem 5.1.

The problem which originally motivated this piece of work was to extend Elworthy
and Truman’s formula to manifolds with a cut locus. Theorem 4.1 was the first new res-
ult to be proved in this article and led to the remainder of the investigation. The author
wishes to thank Xue-Mei Li for for advising this and the study of point to submanifold
bridges, as either conditioned Brownian motions or as Brownian motions with directed
drift, and for suggesting several useful references.

1 The Heat Kernel Integrated over a Submanifold

Suppose that M is a complete and connected Riemannian manifold of dimension m and
that X(x) is a Brownian motion on M starting at x ∈M defined up to an explosion time
ζ(x). An open connected subset D of M is called a regular domain if it has smooth
boundary and compact closure. If pD denotes the Dirichlet heat kernel on a regular
domain D then pD is the fundamental solution to the heat equation on D with Dirichlet
boundary conditions. If f is a non-negative measurable function on D then pD satisfies

E
[
1{t<τD}f(Xt(x))

]
=

∫
M

f(y)pDt (x, y) d volM (y)

for all t > 0 where τD denotes the first exit time of X(x) from D. If {Di}∞i=1 is an
exhaustion of M by regular domains then the minimal heat kernel on M is given by
pM := limi↑∞ pDi . It is the minimal fundamental solution of the heat equation on M and
coincides with the transition densities of Brownian motion.

Example 1.1. On Rm the heat kernel is given by the Gauss-Weierstrass kernel

pR
m

t (x, y) = (2πt)
−m2 exp

(
−d

2(x, y)

2t

)
(2)

for x, y ∈ Rm and t > 0.

3



Example 1.2. On H3
κ, the hyperbolic space of dimension 3 with constant sectional

curvatures κ < 0, there is the formula

p
H3
κ

t (x, y) = (2πt)−
3
2 exp

[
−d

2(x, y)

2t

] √
−κd(x, y)e

κt
2

sinh
(√
−κd(x, y)

)︸ ︷︷ ︸
≤1

(3)

for x, y ∈ H3
κ and t > 0.

Example 1.3. On S1, the unit circle, there is the summation formula

pS
1

t (x, y) = (2πt)−
1
2 exp

[
−d

2(x, y)

2t

]∑
k∈Z

exp

[
−2πk(d(x, y) + πt)

t

]
︸ ︷︷ ︸

≥1

for x, y ∈ S1 and t > 0, a result of the fact that S1 is covered by R.

The articles [17] and [25] provide iterative formulae for the heat kernels on the
standard hyperbolic and spherical spaces, respectively, of arbitrary dimension. It is
generally difficult to find deterministic formulae, unless the manifold in question exhib-
its a certain amount of symmetry, as in the above examples.

Now suppose that N is a closed embedded submanifold of M of dimension n ∈
{0, . . . ,m − 1} and recall the definition of the integrated heat kernel given by formula
(1). If D is a regular domain in M then define similarly

pDt (x,N) :=

∫
N

pDt (x, y)d volN (y) (4)

for x ∈M and t > 0, where volN denotes the measure on N induced by the embedding.

Example 1.4. For r > 0 denote by S1(r) the circle of radius r centred at the origin in
R2. Then

pR
2

t (x, S1(r)) = rt−1 exp

[
−
(
r2 + ‖x‖2

)
2t

]
BesselI

(
0,
r‖x‖
t

)
for x ∈ R2 and t > 0, where BesselI denotes the modified Bessel function of the first
kind. A plot of the integrated kernel is given below in Figure 1.

Figure 1: A density plot of the integral over a circle of the heat kernel on R2, at a fixed small
time t > 0. The origin is located at the center of the image.
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For y ∈ M one can think of pM· (·, y) as a solution to the heat equation on M for
the measure-valued initial condition given by the Dirac measure based at y. Similarly,
pM· (·, N) can be thought of as a solution to the heat equation on M for the measure-
valued initial condition volN . For example, if N is a closed embedded surface in R3

uniformly heated at time zero then pR
3

· (·, N) describes how the heat diffuses for positive
times. Alternatively, if N is a closed embedded loop in R3 then pR

3

· (·, N) could be used
to describe the temperature around a hot metal wire. A probabilistic interpretation of
the integrated heat kernel will be given in the next section by Theorem 2.1.

Our basic approach will be to compare pM· (·, N) to the function

qt(x,N) := (2πt)−
(m−n)

2 exp

[
−d

2(x,N)

2t

]
(5)

since if Rn is viewed as an affine linear subspace of Rm then

pR
m

T (x,Rn) = qT (x,Rn). (6)

Example 1.5. Viewing the 2-dimensional hyperbolic space H2 as an embedded totally
geodesic submanifold of H3, Ndumu [26] used formula (3) with κ = −1 to show that

pH
3

t (x,H2) = qt(x,H
2)

e−
t
2

cosh(d(x,H2)))
(7)

for x ∈ H3 and t > 0.

2 Brownian Bridges

Suppose in this section that M is a stochastically complete and that N is compact. Fix
T > 0 and x ∈M and consider the associated canonical probability space

(W (M),B(W (M)),Px)

equipped with canonical filtration {Bt(W (M))}0≤t≤T . Here W (M) is the space of con-
tinuous paths defined on [0, T ] taking values inM , Bt(W (M)) is the σ-algebra generated
by the coordinate maps upto time t and Px is Wiener measure, with respect to which
the coordinate process {Xt : t ∈ [0, T ]} is a Brownian motion on M starting at x.

2.1 Conditioning on the Distance Function

Recall that the normal exponential map is simply the exponential map restricted to
the normal bundle TN⊥. Denote its Jacobian determinant by θN . Inequalities for this
object were provided in [41]. The following theorem shows how the integrated heat
kernel appears naturally when a Brownian motion is conditioned to arrive in N at the
fixed time T .

Theorem 2.1. Choose t ∈ [0, T ) and a bounded Bt(W (M))-measurable random variable
F . Then

Ex [F (X)|XT ∈ N ] =
Ex
[
pMT−t(Xt, N)F (X)

]
pMT (x,N)

. (8)
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Proof. For sufficiently small ε > 0 it follows from the definition of conditional expecta-
tion, the Markov property, Fubini’s theorem and the smooth coarea formula that

Ex [F (X)|d(XT , N) < ε]

=
Ex
[
1{d(XT ,N)<ε}F (X)

]
Px{d(XT , N) < ε}

=
Ex
[
PT−t1{d(·,N)<ε}(Xt)F (X)

]
Px{d(XT , N) < ε}

=

∫
Bε(N)

Ex
[
pMT−t(Xt, y)F (X)

]
d volM (y)∫

Bε(N)
pMT (x, y) d volM (y)

=

∫
N

∫
Bzε (0)

Ex
[
pMT−t(Xt, exp(ξ))F (X)

]
θN (ξ) dξ d volN (z)∫

N

∫
Bzε (0)

pMT (x, exp(ξ))θN (ξ) dξ d volN (z)

where Bzε (0) denotes the open ball in TzN⊥ of radius ε centred at the origin. Since the
volume of these balls is constant and independent of z, it follows by the continuity of
the above integrands and θN |N = 1 that

lim
ε↓0
Ex [F (X)|d(XT , N) < ε] =

∫
N
Ex
[
pMT−t(Xt, z)F (X)

]
d volN (z)∫

N
pMT (x, z) d volN (z)

from which the result follows, by the definition of the left-hand side of (8) as a Radon-
Nikodym derivative.

For each t ∈ [0, T ) it follows, by Theorem 2.1 and the smooth coarea formula, that
conditioning a Brownian motion to be in the interior of a tubular neighbourhood of N
of radius ε at time T while separately conditioning Brownian motion to belong to the
boundary of that tubular neighbourhood at time T results in two measures on Bt(W (M))

which converge weakly to the same limit as ε ↓ 0.

2.2 Existence of the Bridge Measure

If for y ∈ M we define a measure Px,y;T on B(W (M)) by Px,y;T {A} = P{A|XT = y},
for A ∈ B(W (M)), then Theorem 2.1 implies that Px,y;T is absolutely continuous with
respect to Px on Bt(W (M)) for any t ∈ [0, T ) and that the Radon-Nikodym derivative is
given by

dPx,y;T |Bt(W (M))

dPx
=
pMT−t(Xt, y)

pMT (x, y)
.

In particular, if Px,y;T exists as a probability measure on the space of continuous paths
starting at x and terminating at y at time T then under Px,y;T and for 0 < t1 < · · · <
tk < T the joint density function of Xt1 , . . . , Xtk , denoted by pMt1,...,tk(x, x1, . . . , xk, y), is
given by

pMt1,...,tk(x, x1, . . . , xk, y) =
pMt1 (x, x1)pMt2−t1(x1, x2) · · · pMT−tk(xk, y)

pMT (x, y)
, (9)

as is well-known. We will prove the existence of Px,y;T assuming that there exist con-
stants c, σ2 > 0 such that

pMt (w, z) ≤ ct−m2 exp

[
−d

2(w, z)

σ2t

]
(10)
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for all w, z ∈M and t ∈ (0, T ] and a constant β ≥ 0 such that

θw(ξ) ≤ exp
[
β(1 + ‖ξ‖2)

]
(11)

for all w ∈ M and ξ ∈ TwM . By [16] and [41], such bounds exist if the Ricci curvature
is bounded below by a constant with volM lower regular. In particular, by [9] and [41],
such bounds exist if the Ricci curvature is bounded with M having positive injectivity
radius, in which case the constants c and σ2 can be chosen so that σ2 is arbitrarily close
to 2. For the case in which M is compact, a version of the following lemma was proved
by Driver in [10].

Lemma 2.2. Assume (10) and (11), suppose 0 ≤ s < t ≤ T and without loss of generality
assume β > 0. Then for all γ ∈ (0, 1) there exists a constant C(m, c, σ2, β, γ, T ) > 0 such
that for all p > 0 we have

Ex,y;T [dp(Xs, Xt)] ≤
C(m, c, σ2, β, γ, T )

pMT (x, y)

Γ
(
m+p

2

)
Γ
(
m
2

) (
σ2(t− s)

1− γ

) p
2

so long as t− s < γ(σ2β)−1.

Proof. First assume 0 < s < t < 2T/3. If a > 0 then∫ ∞
0

exp
[
−ar2

]
rm−1ds =

Γ(m/2)

2a
m
2

and so for w ∈M we have∫
M

pMt−s(w, z)d
p(w, z) d volM (z)

≤ c(t− s)−m2
∫
M

exp

[
− d2(w, z)

σ2(t− s)

]
dp(w, z) d volM (z)

≤ ceβ(t− s)−m2
∫
TwM

‖ξ‖p exp

[(
β − 1

σ2(t− s)

)
‖ξ‖2

]
dv

= ceβ
mπ

m
2 (t− s)−m2

Γ
(
m
2 + 1

) ∫ ∞
0

rp+m−1 exp

[(
β − 1

σ2(t− s)

)
r2

]
dr

= ceβ
π
m
2 Γ
(
m+p

2

)
(t− s)−m2

Γ
(
m
2

) (
1− βσ2(t− s)
σ2(t− s)

)− (m+p)
2

≤ ceβ
Γ
(
m+p

2

)
Γ
(
m
2

) (
σ2π

1− γ

)m
2
(
σ2(t− s)

1− γ

) p
2

.

Thus there exists a constant C0(m, c, σ2, β, γ) > 0 such that∫
M

pMt−s(w, z)d
p(w, z)d volM (z) ≤ C0(m, c, σ2, β, γ)

Γ
(
m+p

2

)
Γ
(
m
2

) (
σ2(t− s)

1− γ

) p
2

for all p > 0, w ∈M and s, t satisfying t− s < γ(σ2β)−1. For such s, t we see that

Ex,y;T [dp(Xs, Xt)]

=

∫
M

∫
M

pMs (x,w)pMt−s(w, z)d
p(w, z)pMT−t(z, y)

pMT (x, y)
d volM (w)d volM (z)

≤ (T/3)−m/2
C1(m, c, σ2, β, γ)

pMT (x, y)

Γ
(
m+p

2

)
Γ
(
m
2

) (
σ2(t− s)

1− γ

) p
2

.

The same result is obtained for T/3 < s < t < T . The cases s = 0 or t = T can be
treated similarly.
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If F is a bounded Bt(W (M))-measurable function on W (M) for some t ∈ [0, T ) then
it follows from Theorem 2.1 that

Ex [F (X)|XT ∈ N ] =

∫
N
pMT (x, y)Ex,y;T [F (X)] d volN (y)

pMT (x,N)
(12)

which implies, by Lemma 2.2, that for all p ≥ 2 there exists ε, Cε > 0 such that

Ex [dp(Xs, Xt)|XT ∈ N ] ≤ Cε(t− s)
p
2

for all 0 ≤ s < t ≤ T with t− s < ε. It follows from Kolmogorov’s continuity theorem, by
covering the interval [0, T ] with finitely many closed intervals each of length less that ε,
that there exists a probability measure Px;N,T on the bridge space

Lx;N,T (M) := {ω ∈W (M) : X0(ω) = x, XT (ω) ∈ N}

which satisfies Px;N,T {A} = Px{A|XT ∈ N} for A ∈ B(W (M)) and whose finite-
dimensional distributions can be deduced from equations (9) and (12). In particular,
if Px;N,T

XT
denotes the law of the random variable XT under the measure Px;N,T then

P
x;N,T
XT

=
pMT (x, ·)
pMT (x,N)

volN .

For example, ifM = Rm withN the unit (m−1)-sphere and x = 0 then Px;N,T
XT

is given by
the uniform measure on N . In contrast, if M = Rm with N an n-dimensional subspace
and x = 0 then Px;N,T

XT
is given by the heat kernel measure on N . Note that the measure

Px;N,T clearly exists in the latter case, even though N is non-compact.
Using Lemma 2.2 we can prove the following concentration inequality for tubular

neighbourhoods.

Proposition 2.3. Assuming (10) and (11), for all γ ∈ (0, 1) there exists ε > 0 such that

lim
r↑∞

1

r2
logPx;N,T {Xt 6∈ Br(N)} ≤ − 1− γ

σ2(T − t)
for all t ∈ (T − ε, T ].

Proof. Without loss of generality, assume β > 0. Since d(·, N) = infy∈N d(·, y) it follows
that for each y ∈ N we have Ex,y;T [dp(Xt, N)] ≤ Ex,y;T [dp(Xt, y)]. Therefore, by apply-
ing (12) with F (X) = dp(Xt, N), we see by Lemma 2.2 that for all γ ∈ (0, 1) there exists
C(m, c, σ2, β, γ,N, T ) > 0 such that

Ex;N,T [dp(Xt, N)] ≤ C(m, c, σ2, β, γ,N, T )

pMT (x,N)

Γ
(
m+p

2

)
Γ
(
m
2

) (
σ2(T − t)

1− γ

) p
2

for all 0 ≤ t ≤ T with T − t < γ(σ2β)−1. For such t, choosing θ > 0, applying this bound
to the case where p is an even integer and summing yields

Ex;N,T
[
e
θ
2 d

2(Xt,N)
]
≤ C(m, c, σ2, β, γ, x,N, T )

(
1− θσ2(T − t)

2(1− γ)

)−m2
so long as t > T −2(1−γ)(θσ2)−1. Under these conditions on t, it follows from Markov’s
inequality that for all r > 0 there is the estimate

Px;N,T {Xt 6∈ Br(N)} ≤ C(m, δ, γ, cR, x,N, T )

(
1− θσ2(T − t)

2(1− γ)

)−m2
e−

θr2

2 .

Fixing δ ∈ [0, 1) and choosing θ = 2δ(1− γ)(σ2(T − t))−1 this yields

lim
r↑∞

1

r2
logPx;N,T {Xt 6∈ Br(N)} ≤ − δ(1− γ)

σ2(T − t)
from which the result follows since δ can be chosen arbitrarily close to 1.
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2.3 Semimartingale Property

It follows from (12) and Girsanov’s theorem that under the measure Px;N,T the coordin-
ate process on W (M) is a diffusion on the half-open time interval [0, T ) starting at x
with time-dependent infinitesimal generator

1

2
4+∇ log pMT−t(·, N)

for t ∈ [0, T ). To show that it is a semimartingale under this measure over the closed
time interval [0, T ] we require a suitable estimate on the logarithmic derivative. This
estimate will be deduced from the results obtained in Sections 3, 4 and 5. It is given by
Theorem 6.2 in Section 6 and the semimartingale property is given by Corollary 6.4.

3 Fermi Bridges

In this section we introduce a bridge process defined in terms of the distance function
rN (·) := d(·, N). Recall that the cut locus of N , denoted by Cut(N), is given by the
closure of the set of points at which r2

N fails to be differentiable. It is a closed set of
volM -measure zero which is, upto a set of Hausdorff dimension at most m − 2, an at
most countable union C̊(N) of open subsets of hypersurfaces. These facts follow from
the work of Angulo Ardoy and Guijarro [1] and Mantegazza and Mennucci [24] who
used Hamilton-Jacobi equations and the theory of viscosity solutions. The vector field
∂
∂rN

will denote differentiation in the radial direction, defined off the union of N and
Cut(N) to be the gradient of rN and set equal to zero elsewhere. For T > 0 fixed with
q· (·, N) defined by equation (5), the time-dependent vector field

1M\Cut(M)∇ log qT−t(·, N) = − rN
T − t

∂

∂rN

where t ∈ [0, T ) is smooth away from the cut locus but generally not continuous on
it. One imagines the deterministic flow associated to this vector field as being one for
which Cut(N) is a source and for which N is a sink. The strength of the flow increases
dramatically as the terminal time T is approached, while the vector field vanishes on
N . A diffusion on M starting at x with time-dependent infinitesimal generator

1

2
4− rN

T − t
∂

∂rN

will be called a Fermi bridge between x and N in time T . Such processes will always
be defined upto a predictable stopping time less than or equal to T . We use the name
Fermi bridge since the time-dependent part of the drift acts in a direction normal to N ,
which would be the radial part of a system of polar Fermi coordinates, and since there
are conditions under which this process arrives at N at time T almost surely. Note
that if M = Rm with N a point then the above definition reduces to that of a standard
Brownian bridge.

3.1 Radial Part

Suppose that X̂(x) is a Fermi bridge between x and N in time T , defined upto the min-
imum of T and its explosion time. Suppose also that D is a regular domain in M and
denote by τ̂D the first exit time of X̂(x) from D. Since Č(N) is polar for X̂(x) and since
the martingale part of an antidevelopment of X̂(x) is a standard Brownian motion, the
Itô formula of Barden and Le [3, Thoerem 1] implies that there exist continuous adapted
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non-decreasing and non-negative processes LN (X̂(x)) and LC̊(N)(X̂(x)) whose associ-
ated random measures are singular with respect to Lebesgue measure and supported
when X̂(x) takes values in N and C̊(N), respectively, such that

rN (X̂t∧τ̂D (x)) = rN (x) + βt∧τ̂D +
1

2

∫ t∧τ̂D

0

4rN (X̂s(x)) ds

−
∫ t∧τ̂D

0

rN (X̂s(x))

T − s
ds− LCut(N)

t∧τ̂D (X̂(x)) + LNt∧τ̂D (X̂(x))

(13)

for all t ∈ [0, T ), almost surely, where β is a standard one-dimensional Brownian motion
and

dLCut(N)(X̂(x)) := −1

2

(
D+ −D−

)
X̂(x)

rN (n) dLC̊(N)(X̂(x)). (14)

Here n is any unit normal vector field on C̊(N) and the Gâteaux derivatives D±rN are
defined for z ∈ C̊(N) and v ∈ TzM by

D+
z rN (v) := lim

ε↓0

1

ε
(f(expz(εv))− rN (z))

and D−z rN (v) := −D+
z rN (−v). The processes LN (X̂(x)) and LC̊(N)(X̂(x)) are, roughly

speaking, given by the local times at zero of d(X̂(x), N) and d(X̂(x), C̊(N)), respectively,
whenever the latter make sense. Using this formula we can estimate the radial moments
of the Fermi bridge, restricting our attention to the domain D and doing so under the
assumption that there exist constants ν ≥ 1 and λ ≥ 0 such that

1

2
4r2

N ≤ ν + λr2
N (15)

on D \ Cut(N).

Theorem 3.1. Let ν ≥ 1 and λ ≥ 0 be any constants such that inequality (15) holds on
D \ Cut(N). Then we have

E
[
1{t<τ̂D}r

2
N (X̂t(x))

]
≤
(
r2
N (x)

(
T − t
T

)
+ νt

)(
T − t
T

)
eλt (16)

for all t ∈ [0, T ).

Proof. Define the function f̂x,2 : [0, T )→ R by

f̂x,2(t) := E[1{t<τ̂D}r
2
N (X̂t(x))]

for t ∈ [0, T ). By Itô’s formula and formula (13) we deduce the differential inequality{
f̂ ′x,2(t) ≤ ν +

(
λ− 2

T−t

)
f̂x,2(t)

f̂x,2(0) = r2
N (x)

for all t ∈ [0, T ). Applying Gronwall’s inequality to it yields

f̂x,2(t) ≤

(
r2
N (x) + ν

∫ t

0

(
T

T − s

)2

e−sλds

)(
T − t
t

)2

eλt

≤
(
r2
N (x) + νt

(
t

T − t

))(
T − t
t

)2

eλt

where we used the assumption λ ≥ 0 for the second inequality.
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Note that for M = Rm with N a linear subspace, with ν = m− n and λ = 0, one can
set D = M and inequality (16) holds as an equality. Also, Jensen’s inequality implies
the following estimate on the first radial moment.

Corollary 3.2. Let ν ≥ 1 and λ ≥ 0 be any constants such that inequality (15) holds on
D \ Cut(N). Then we have

E[1{t<τ̂D}rN (X̂t(x))] ≤
((

r2
N (x)

(
T − t
T

)
+ νt

)(
T − t
T

)) 1
2

e
λt
2

for all t ∈ [0, T ).

In the next subsection we consider the case where there exist constants ν ≥ 1 and
λ ≥ 0 such that inequality (15) holds on the whole of M \ Cut(N).

3.2 Bridge Property

Suppose for this subsection that there exists constants ν ≥ 1 and λ ≥ 0 such that
inequality (15) holds onM\Cut(N). Suppose also thatX(x) is a non-explosive Brownian
motion on M starting at x, defined on a filtered probability space

(Ω,F , {Ft}t≥0,P)

satisfying the usual conditions. Note that, by [41, Theorem 5], if N is compact then
inequality (15) implies the non-explosion of X(x). For t ∈ [0, T ) define

Mt := exp

[
−
∫ t

0

rN (Xs(x))

T − s

〈
∂

∂rN
, UsdBs

〉
− 1

2

∫ t

0

r2
N (Xs(x))

(T − s)2
ds

]
where U is a horizontal lift of X(x) to the orthonormal frame bundle with antidevelop-
ment B. It follows from [41, Proposition 3] and Novikov’s criterion that M is a mar-
tingale up to time t for each t ∈ [0, T ). For each t ∈ [0, T ) we can therefore define a
new probability measure Qt on Ft by dQt = MtdP. It follows from Girsanov’s theorem
that the process X(x) when restricted to [0, t) and considered on the filtered probability
space (

Ω,Ft, {Fs}s∈[0,t),Qt
)

is a Fermi bridge between x and N in time T . We therefore obtain a new process,
denoted by X̂(x), defined on [0, T ) and equivalent to the Brownian motion X(x) on [0, t)

for each t ∈ [0, T ). By considering an exhaustion of M by regular domains, Theorem 3.1
and the monotone convergence theorem imply that it satisfies the bridge property

lim
t↑T

rN (X̂t(x)) = 0

almost surely. In particular, if N is a point p then one then can extend X̂(x) to a con-
tinuous process on [0, T ] by setting X̂T (x) = p.

4 Heat Kernel Formula and Comparison Theorem

In this section we prove the main result of this article. Denote by M(N) the largest
domain in TN⊥ with star-like fibres and such that exp |M(N) is a diffeomorphism onto
its image. Then the image of exp |M(N) is M \ Cut(N). Recalling that θN denotes the
Jacobian determinant of the normal exponential, define also

ΘN := θN ◦
(
exp |M(N)

)−1

11



and note that from [15] there is the formula

1

2
4r2

N = (m− n) + rN
∂

∂rN
log ΘN (17)

on M \ Cut(N). Recall also the definition of the geometric local time LCut(N)(X̂(x))

given in Subsection 3.1 by formula (14).

Theorem 4.1. Suppose that M is a complete and connected Riemannian manifold
of dimension m, that N is a closed embedded submanifold of M of dimension n ∈
{0, . . . ,m − 1} and that D is a regular domain in M . Suppose that x ∈ M with T > 0

and that X̂(x) is a Fermi bridge between x and N in time T . Denote by τ̂D the first exit
time of this process from D. Then, with qT (x,N) and pDT (x,N) defined by (5) and (4),
respectively, we have

pDT (x,N) = qT (x,N) lim
t↑T

E

[
1{t<τ̂D} exp

[∫ t

0

rN (X̂s(x))

T − s

(
dAs + dLs

)]]

where

dAs :=
∂

∂rN
log Θ

− 1
2

N (X̂s(x)) ds, dLs := dLCut(N)
s (X̂(x)). (18)

Proof. To begin with, we see by the smooth coarea formula that

lim
t↑T

∫
M

pDt (x, y)qT−t(y,N)d volM (y)

= lim
t↑T

∫
N

∫
TzN⊥

(pDt (x, exp)1Mz(N)θN )(ξ)(2π(T − t))−
(m−n)

2 exp

[
− ‖ξ‖2

2(T − t)

]
dξd volN (z)

= lim
t↑T

∫
N

∫
TzN⊥

(pDt (x, exp)1Mz(N)θN )(
√
T − tξ)(2π)−

(m−n)
2 exp

[
−‖ξ‖

2

2

]
dξd volN (z)

=

∫
N

∫
TzN⊥

(pDT (x, exp)1Mz(N)θN )(0z)(2π)
− (m−n)

2 exp

[
−‖ξ‖

2

2

]
dξd volN (z)

=

∫
N

pDT (x, z)d volN (z)

where 0z denotes the origin of the vector space TzN
⊥ and where the third equality

follows from the compactness of the closure of D and the dominated convergence the-
orem. Then, denoting by {PDt : t ≥ 0} the Dirichlet heat semigroup, it follows from
Girsanov’s theorem that∫

N

pDT (x, z)d volN (z) = lim
t↑T

∫
M

pDt (x, y)qT−t(y,N)d volM (y)

= lim
t↑T

PDt qT−t(·, N)(x)

= lim
t↑T

E
[
1{t<τ̂D}qT−t(X̂t(x), N)M̂t

]
with

M̂t∧τ̂D = exp

[∫ t∧τ̂D

0

rN (X̂s(x))

T − s

〈
∂

∂rN
, ÛsdBs

〉
− 1

2

∫ t∧τ̂D

0

r2
N (X̂s(x))

(T − s)2
ds

]
(19)

where Û is a horizontal lift of X̂(x) to the orthonormal frame bundle and where B is the
associated Rm-valued Brownian motion given by the antidevelopment of Û . Now, using
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Itô’s formula and formula (13) we deduce that

log qT−(t∧τ̂D)(X̂t∧τ̂D (x), N)

= log qT (x,N)−
∫ t∧τ̂D

0

rN (X̂s(x))

T − s

〈
∂

∂rN
, ÛsdBs

〉
+

∫ t∧τ̂D

0

∂

∂s
log qT−s(X̂s(x), N)ds+

∫ t∧τ̂D

0

r2
N (X̂s(x))

(T − s)2
dsds

+
1

2

∫ t∧τ̂D

0

4 log qT−s(X̂s(x), N)ds

+

∫ t∧τ̂D

0

rN (X̂s(x))

T − s
dLCut(N)

s (X̂(x)).

and so we can eliminate the stochastic integral in (19) by rearrangement and substitu-
tion. Finally, using the fact that

∂

∂s
log qT−s(·, N) =

m− n
2(T − s)

− r2
N (·)

2(T − s)2

and also that

4 log qT−s(·, N) = − 4r
2
N (·)

2(T − s)

on M \Cut(N) together with formula (17) we can further simplify the resulting expres-
sion so as to obtain the desired formula.

Theorem 4.2. Suppose that {Di}∞i=1 is an exhaustion of M by regular domains. Then,
with pMT (x,N) defined by (1), we have

pMT (x,N) = qT (x,N) lim
i↑∞

lim
t↑T

E

[
1{t<τ̂Di} exp

[∫ t

0

rN (X̂s(x))

T − s

(
dAs + dLs

)]]
where dA and dL are defined by (18).

Proof. Recalling that pM is given as the limit of the increasing sequence of Dirichlet
heat kernels pDi , it follows from the monotone convergence theorem that

pMT (x,N) = lim
i↑∞

pDiT (x,N)

and so the result follows from Theorem 4.1.

The absolutely continuous random measure dA can be understood precisely in terms
of Jacobi fields, using Heintze and Karcher’s comparison theorem for ∂

∂rN
log θN which

was carefully explained in [18, Section 3]. The singular random measure dL vanishes if
the cut locus is polar for X̂(x). In particular, we have the following corollary of Theorem
4.2, which shows that we recover identity (6) in the Euclidean setting.

Corollary 4.3. Suppose that M is stochastically complete, that the cut locus of N has
Hausdorff dimension at most m− 2 and that one of the following conditions is satisfied:

(A1) n ∈ {0, . . . ,m−1}, the sectional curvature of planes containing the radial direction
vanishes and N is totally geodesic;

(A2) n ∈ {0,m − 1}, the Ricci curvature in the radial direction vanishes and N is min-
imal.

13



Then we have
pMT (x,N) = qT (x,N)

for all x ∈M and T > 0.

Proof. The corollary follows from Theorem 4.2, the Heintze-Karcher theorem and the
monotone convergence theorem.

If N is a point then Theorem 4.2 provides a formula for the heat kernel itself. In
this case, by the Heintze-Karcher theorem, the random measure dA has the property of
being non-negative if the Ricci curvature of M is non-negative and non-positive if the
Ricci curvature of M is non-positive. The Heintze-Karcher also yields a comparison the-
orem, stated below, in which we view Hnκ as a totally geodesic embedded submanifold
of Hmκ and set Hn0 := Rn and Hm0 := Rm. It is a partial generalization of the heat kernel
comparison theorem of Cheeger and Yau [6].

Theorem 4.4. Suppose that M is stochastically complete and that one of the following
conditions is satisfied:

(B1) n ∈ {0, . . . ,m−1}, the sectional curvature of planes containing the radial direction
is bounded below by κ ≤ 0 and N is totally geodesic;

(B2) n ∈ {0,m − 1}, the Ricci curvature in the radial direction is bounded below by
(m− 1)κ ≤ 0 and N is minimal.

Then we have
pMT (x,N) ≥ pH

m
κ

T (y,Hnκ)

for any y ∈ Hmκ satisfying rN (x) ≤ rHnκ (y).

Proof. First suppose κ = 0. Then ∂
∂rN

log ΘN ≤ 0, by [41, Theorem 1], so the assertion
follows from Theorem 4.2 since L is non-decreasing. So assume κ < 0 and define a
function gκ by

gκ(t) := (m− n− 1)
(√
−κt coth(

√
−κt)− 1

)
+ n
√
−κt tanh(

√
−κt).

Then, by the Heintze-Karcher theorem, it follows that

rN
∂

∂rN
log ΘN ≤ gκ(rN ).

Since L is non-decreasing with gκ non-negative, it follows from this, Theorem 4.2 and
dominated convergence that

pMT (x,N) ≥ qT (x,N)E

[
exp

[
−
∫ T

0

gκ(rN (X̂s(x)))

2(T − s)
ds

]]
.

Now let Ŷ (y) be a Fermi bridge between y and Hnκ in time T such that its radial
part rHnκ (Ŷ (y)) satisfies a stochastic differential equation driven by the one-dimensional

Brownian motion β which drives the equation for rN (X̂(x)). Then the Heintze-Karcher
theorem, applied to the coefficients of the stochastic differential equation for r2

N (X̂(x)),
combined with the comparison theorem for solutions to stochastic differential equa-
tions given in [31], implies that rN (X̂(x)) ≤ rHnκ (Ŷ (y)), almost surely. Since gκ is non-
decreasing this yields

pMT (x,N) ≥ qT (y,Hnκ)E

[
exp

[
−
∫ T

0

gκ(rHnκ (Ŷs(y)))

2(T − s)
ds

]]
. (20)
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But the right-hand side of (20) is equal to p
Hmκ
T (y,Hnκ), by Theorem 4.2 and the fact that

gκ(rHnκ ) = rHnκ
∂

∂rHnκ
log ΘHnκ ,

so the result follows.

4.1 Hypersurface Local Time

If X(x) is a Brownian motion starting at x ∈ M then rN (X(x)) is a continuous semi-
martingale. For the case in which N is a hypersurface, the local time of this process at
zero is denoted by LN (X(x)) and referred to as the local time of X(x) on N . In certain
circumstances, such as when M is compact, it was explained in [41] that there is the
formula

E
[
LNt (X(x))

]
=

∫ t

0

pMs (x,N) ds. (21)

In the hypersurface case, the integrated heat kernel is therefore given by the time
derivative of a mean local time.

Example 4.5. Viewing the 2-dimensional hyperbolic space H2 as an embedded totally
geodesic submanifold of H3, if X(x) is a Brownian motion in H3 starting at x then
rH2(X(x)) is a Markov process and so, by results in [14] and a change of variables,
formula (21) holds in this setting. Therefore, by (7), it follows that

lim
t↑∞

E
[
LH

2

t (X(x))
]

= sech(rH2(x)))

∫ ∞
0

(2πt)−
1
2 exp

[
−
r2
H2(x)

2t
− t

2

]
dt

= sech(rH2(x)) exp [−rH2(x)] .

In contrast, if R2 is viewed as a linear subspace of R3 with X(x) a Brownian motion in
R3 starting at x then

lim
t↑∞

E
[
LR

2

t (X(x))
]

=∞.

Theorem 4.4 yields the following comparison for the mean local time, where we
retain the notational convention outlined before Theorem 4.4.

Corollary 4.6. Suppose that N is a minimal hypersurface and that the Ricci curvature
in the radial direction is bounded below by (m − 1)κ ≤ 0. Suppose also that X(x) is a
non-explosive Brownian motion on M starting at x, denote by LN (X(x) the local time
on X(x) on N and assume that formula (21) holds. Denote by Y (y) a Brownian motion
on Hmκ starting at y with rN (x) ≤ rHm−1

κ
(y). Then

E[LNt (X(x))] ≥ E[L
Hn−1
κ

t (Y (y))] (22)

for all t ≥ 0.

Proof. This follows from directly from Theorem 4.4 and formula (21).

In particular, if κ = 0 with x ∈ N and rHm−1
0

(y) = 0 then the right-hand side of (22) is

equal to
√

2t
π .
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5 Lower Bound and Asymptotic Relation

The heat kernel lower bounds of Cheeger and Yau [6] were proved using a bound on
the Ricci curvature in the radial direction and a Laplacian comparison theorem. These
are similar to the objects we use, although our method is quite different. Our method
is closer in spirit to that of Wang [44], who also used stochastic techniques with un-
bounded curvature, but only in the one point case. Note that the constants C1, C2 and
Λ appearing in the following theorem typically depend upon N .

Theorem 5.1. Suppose thatM is stochastically complete and that there exist constants
C1, C2 ≥ 0 such that one of the following conditions is satisfied off the union of N and
its cut locus:

(C1) the sectional curvatures of planes containing the radial direction are bounded
below by −(C1 + C2rN )2 and there exists a constant Λ ≥ 0 such that the principal
curvatures of N are bounded in modulus by Λ;

(C2) n = 0 and the Ricci curvature in the radial direction is bounded below by −(m −
1)(C1 + C2rN )2;

(C3) n = m − 1 and the Ricci curvature in the radial direction is bounded below by
−(m − 1)(C1 + C2rN )2 and there exists a constant Λ ≥ 0 such that the mean
curvature of N is bounded in modulus by Λ.

Then for each T > 0 there exists a constant C ≥ 0, depending only on T,C1, C2,Λ,m

and n, such that

pMt (x,N) ≥ t−
(m−n)

2 exp

[
−r

2
N (x)

2t
− C(1 + r2

N (x))

]
for all x ∈M and t ∈ (0, T ].

Proof. By [41, Theorem 1], the curvature conditions imply

∂

∂rN
log ΘN ≤ α+ βrN (23)

with α := nΛ + (m − 1)C1 and β := (m − 1)C2. Using the process X̂(x) constructed
in Subsection 3.2 it follows from this, Theorem 4.2 and the fact that LCut(N)(X̂(x)) is
non-decreasing that

pMT (x,N) ≥ qT (x,N) lim
i↑∞

lim
t↑T

E

[
1{t<τ̂Di} exp

[
−
∫ t

0

f(X̂s(x))

T − s
ds

]]

where f := 1
2

(
αrN + βr2

N

)
. For t ∈ [0, T ) we see that

1{t<τ̂Di} exp

[
−
∫ t

0

f(X̂s(x))

T − s
ds

]
= 1{t<τ̂Di}

∞∑
p=0

(
−
∫ t

0
f(X̂s(x))
T−s ds

)p
p!

= 1{t<τ̂Di} − 1 +

∞∑
p=0

(
−1{t<τ̂Di}

∫ t
0
f(X̂s(x))
T−s ds

)p
p!

= 1{t<τ̂Di} − 1 + exp

[
−1{t<τ̂Di}

∫ t

0

f(X̂s(x))

T − s
ds

]
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from which it follows, by Jensen’s inequality, that

E

[
1{t<τ̂Di} exp

[
−
∫ t

0

f(X̂s(x))

T − s
ds

]]

≥ Qt{t < τ̂Di} − 1 + exp

[
−E

[
1{t<τ̂Di}

∫ t

0

f(X̂s(x))

T − s
ds

]]
.

Inequality (23) implies by formula (17) that inequality (15) holds on M \ Cut(N) with
ν = m− n+ α

2 and λ = α
2 + β and so, by Theorem 3.1, we see that

E

[
1{t<τ̂Di}

∫ t

0

r2
N (X̂s(x))

T − s
ds

]
≤
∫ t

0

E[1{s<τ̂Di}r
2
N (X̂s(x))]

T − s
ds

≤
(
r2
N (x) + νT

)
eλT

for all t ∈ [0, T ). Similarly, by Corollary 3.2, we have

E

[
1{t<τ̂Di}

∫ t

0

rN (X̂s(x))

T − s
ds

]
≤
∫ t

0

E[1{s<τ̂Di}rN (X̂s(x))]

T − s
ds

≤
(
r2
N (x) + νt

T

) 1
2

e
λt
2

∫ t

0

(T − s)−
1
2 ds

= 2
(
r2
N (x) + νt

) 1
2 e

λt
2

(
1−

(
T − t
T

) 1
2

)
≤ 2

(
r2
N (x) + νT

) 1
2 e

λT
2

for all t ∈ [0, T ). Consequently

E

[
1{t<τ̂Di}

∫ t

0

f(X̂s)

T − s
ds

]
≤ α

(
r2
N (x) + νT

) 1
2 e

λT
2 +

β

2

(
r2
N (x) + νT

)
eλT

for all t ∈ [0, T ). Furthermore

lim
i↑∞

lim
t↑T

Qt{t < τ̂Di} = 1,

by the bridge property and the monotone convergence theorem, so we have a lower
bound

pMT (x,N) ≥ qT (x,N) exp

[
−α

(
r2
N (x) + νT

) 1
2 e

λT
2 − β

2

(
r2
N (x) + νT

)
eλT
]

= qT (x,N) exp
[
−(nΛ + (m− 1)C1)

(
r2
N (x) + νT

) 1
2 e

λT
2

− (m− 1)C2

2

(
r2
N (x) + νT

)
eλT
]

for all T > 0 and x ∈M , from which the result follows.

Since the heat kernel is a positive fundamental solution to the heat equation, fixing
one of the spatial variables for small times results in densities whose mass is localized
around that fixed point. Riemannian manifolds are locally Euclidean, so for these small
times the resulting densities should be comparable to the Gauss-Weierstrass kernel
(2). The precise sense in which this is true is given by Varadhan’s asymptotic relation,
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originally proved in [42,43], which states for the minimal heat kernel pM of a complete
Riemannian manifold M that

lim
t↓0

t log pMt (x, y) = −d
2(x, y)

2

uniformly on compact subsets of M ×M . Similarly, the embedding of N in M is locally
diffeomorphic to an affine embedding of Rn in Rm so for small times the integrated heat
kernel pM· (·, N) should be comparable to the kernel q·(·, N) defined by equation (5).

Theorem 5.2. Suppose that M is a complete and connected Riemannian manifold of
dimension m and that N is a compactly embedded submanifold of M of dimension
n ∈ {0, . . . ,m− 1}. Then

lim
t↓0

t log pMt (x,N) = −d
2(x,N)

2
(24)

uniformly on compact subsets of M .

Proof. It is a simple matter to show that the left-hand side of (24) is less than or equal
to the right-hand side, using Varadhan’s relation and the fact that rN (x) ≤ ry(x) for
all y ∈ N . To prove the opposite inequality assume first that M is compact. Then the
result follows immediately from Theorem 5.1. So assume that M is non-compact, let
K be any compact subset of M and for x ∈ K and y ∈ N denote by Γx,y the set of all
length-minimizing geodesic segments between x and y, viewed as a subset of M . Then
Γx,y contains (the image of) at least one such geodesic and by the triangle inequality
the set

ΓK,N :=
⋃

x∈K,y∈N
Γx,y

is a bounded subset of M . Now let D be any regular domain in M containing ΓK,N .
ModifyM outside ofD so as to obtain a compact Riemannian manifoldMD (by doubling,
for example) and suppose that D is sufficiently large so that

lim
t↓0

pDt (x, y)

pMD
t (x, y)

= 1

uniformly for x ∈ K and y ∈ N . This is the principle of not feeling the boundary
considered by Hsu in [20]. Such D can always be found, as explained by Norris in [30],
since we are assuming that M is non-compact. Then for all ε > 0 there exists tε,K > 0

such that for t ∈ (0, tε,K) we have

(1− ε)pMD
t (x,N) ≤ pDt (x,N) ≤ pMt (x,N)

for all x ∈ K. It follows from this and the result in the compact case that

lim
t↓0

t log pMt (x,N) ≥ −
d2
MD

(x,N)

2

where dMD
denotes the distance function on MD. But since ΓK,N is contained in D it

follows that x ∈ K and y ∈ N implies dMD
(x, y) ≤ d(x, y). Therefore dMD

(x,N) ≤ d(x,N)

and the result follows.

Example 5.3. Suppose that D is a regular domain. Then ∂D is a compactly embedded
hypersurface and, according to [22, Theorem 5.2.6], one has

lim
t↓0

t logP{τD(x) < t} = −d
2(x, ∂D)

2
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for all x ∈ D, where τD(x) denotes the first exit time from D of a Brownian motion X(x)

starting at x. On the other hand, according to [30, Theorem 1.2], one has

lim
t↓0

t log pMt (x,D, x) = −d
2(x, ∂D)

2

for all x 6∈ D, where pMt (x,D, y) := pMt (x, y)− pM\Dt (x, y) is the measure of heat passing
through D. Theorem 5.2 and formula (21) imply that, in either case, we have

lim
t↓0

t log
d

dt
E
[
L∂Dt (X(x))

]
= −d

2(x, ∂D)

2
.

Example 5.4. If TM is equipped with the Sasaki metric [33, 34] then Theorem 5.2
implies

lim
t↓0

t log pTMt (ξ,M) = −‖ξ‖
2

2

uniformly for ξ in compact subsets of TM .

One could also prove Theorem 5.2 using Ndumu’s asymptotic expansion [28]. While
this expansion is only valid away from the cut locus, it could be used in place of our
lower bounds by connecting points in K to N with smooth curves, covering them with
small balls and invoking the Markov property.

Alternatively, it was proved by Hino and Ramírez in [19], in the context of Dirichlet
spaces, that

lim
t↓0

t logP{X0 ∈ A;Xt ∈ B} = −d
2(A,B)

2

for all measurable sets A and B of positive measure, where X denotes the Markov
process associated with the underlying local regular Dirichlet form and where d is an
associated intrinsic distance. Using Sturm’s upper bounds [39] and pointwise lower
bounds, one can deduce from this the pointwise relation of Varadhan, as shown by
Ramírez [32, Theorem 4.1]. A modification of this approach, replacing balls with tubular
neighbourhoods and the pointwise lower bounds with our integrated heat kernel lower
bounds, might also be used to deduce a relation similar to (24).

5.1 Obtaining an Upper Bound from the Lower Bound

Grigor’yan Hu and Lau showed in [16] how Gaussian upper bounds on the heat kernel
can be obtained from lower bounds. While lower bounds are frequently obtained from
upper bounds, as in the method of Aronson [2], this was the first result to go in the
other direction. Having proved a lower bound on the integrated heat kernel, and since
deducing an upper bound directly from Theorem 4.1 seems hard, it is natural for us
to use this approach to obtain an upper bound. To do so, we require the following
definition.

Definition 5.5. We say that volM is lower regular if there exist constants T0, C > 0

such that

Vr(x) ≥ Crm

for all x ∈M and 0 < r <
√
T0.

For example, if the injectivity radius of M is positive and the Ricci curvature is
bounded above by a constant then volM is lower regular. For geometric conditions
which imply a positive injectivity radius, see [5]. Now assume that volM is lower regular
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and that the Ricci curvature of M is bounded below, by a constant. Then the lower
bound of Theorem 5.1 implies a near-diagonal lower estimate of the form

pMt (x, y) ≥ C ′t−m2

for all 0 < t < T0 and x, y ∈M satisfying d(x, y) < t
1
2 . This implies, by [16, Corollary 3.5],

that there exist constants c, σ2 > 0 (which might depend upon T0) such that

pMt (x, y) ≤ ct−m2 exp

[
−d

2(x, y)

σ2t

]
for all t ∈ (0, T0) and x, y ∈ M . We therefore have the following theorem, by observing
that y ∈ N implies ry(x) ≥ rN (x).

Theorem 5.6. Suppose that the Ricci curvature of M is bounded below by a constant,
that volM is lower regular and that N is compact. Then there exist constants c, σ2 > 0

(which might depend upon T0) such that

pMt (x,N) ≤ ct−m2 exp

[
−r

2
N (x)

σ2t

]
for all x ∈M and t ∈ (0, T0).

6 Gradient and Hessian Estimates

We are now in a position to prove gradient and Hessian estimates. They are global and
hence require assumptions on curvature. For comparison, recall the derivative estim-
ates of Cheng, Li and Yau [7]. They proved, in particular, that if the injectivity radius
of M is positive and there exist constants Ai which bound the ith covariant derivat-
ives of the curvature tensor then for all T > 0 there exist positive constants α(m) and
C(m,A0, . . . , Al−1, T ) such that

‖∇lpMt (·, y)x‖ ≤ C(m,A0, . . . , Al−1, T )t−
(m+l)

2 exp

[
−α(m)d2(x, y)

t

]
for all x, y ∈M and t ∈ [0, T ]. Our estimates will be on the logarithmic derivatives of the
integrated heat kernel. They will be derived using a slight modification of the method
used by Stroock in [38]. We will show precisely how the gradient estimate is derived,
whereas for the Hessian estimate we will refer to [38] for the details. In particular, to
prove the gradient estimate we will need Theorem 5.1 and a formula for the derivative
of the heat semigroup, which we will now state.

Assume that the Ricci curvature of M is bounded below, denote by X(x) a Brownian
motion onM starting at x and denote by U a horizontal lift ofX(x) with antidevelopment
B. Denote also by {Qs : s ≥ 0} the solution the ordinary differential equation{

Q̇s = − 1
2 RicUs Qs

Q0 = U−1
0

(25)

where RicUs := U−1
s Ric] Us. Then for any bounded measurable function f : M → R

there is the formula

d(Ptf)x = E

[
f(Xt(x))

1

t

∫ t

0

〈Qs, dBs〉
]

(26)

for all t > 0. This differentiation formula was proved by Elworthy and Li in [11] and by
Li in [23], using basic stochastic calculus, while another, related, approach was given
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by Thalmaier in [40]. It was proved originally by Bismut in [4] for the case in which M
is compact. An analogous formula was used by Stroock, whose estimate is based upon
the following lemma, proved as [38, Lemma 6.45] using Jensen’s inequality.

Lemma 6.1. Suppose (Ω,F ,P) is a probability space and φ a non-negative measur-
able function on Ω with E [φ] = 1. If φ is a measurable function on Ω such that φψ is
integrable, then E [φψ] ≤ E [φ log φ] + logE[eψ].

Theorem 6.2. Suppose that M is a complete and connected Riemannian manifold of
dimension m and that N is a compactly embedded submanifold of M of dimension
n ∈ {0, . . . ,m − 1}. Suppose that the injectivity radius of M is positive and that the
curvature tensor is bounded. Then for all T > 0 there exists a constant C > 0 such that

‖∇ log pMt (·, N)x‖2 ≤ C
(

1

t
+
n

t
log

1

t
+
d2(x,N)

t2

)
(27)

for all x ∈M and t ∈ (0, T ].

Proof. For a bounded measurable positive function f and γ ∈ R set

φ :=
f(Xt(x))

Ptf(x)
, ψ := γ

∫ t

0

〈Qsv, dBs〉

and see, by Lemma 6.1 and formula (26), that

γt
d(Ptf)x
Ptf(x)

≤ ht(x; f) + logE

[
exp

[
γ

∫ t

0

〈Qs, dBs〉
]]

where

ht(x; f) := E

[
f(Xt(x))

Ptf(x)
log

f(Xt(x))

Ptf(x)

]
. (28)

Furthermore, denoting by R the minimum of the Ricci curvature, equation (25) implies

logE

[
exp

[
γ

∫ t

0

〈Qsv, dBs〉
]]
≤ γ2

2

∫ t

0

e−Rsds

and so, after minimizing over γ, we deduce∣∣∣∣d(Ptf)x
Ptf(x)

∣∣∣∣ ≤ 1

t

(
2ht(x; f)

∫ t

0

e−Rsds

) 1
2

.

Now we choose f(·) = pMt (·, N). Then Ptf(x) = pM2t (x,N), by Tonelli’s theorem, and for
all z ∈M it follows that

ht(x; pMt (·, N)) ≤ sup
z∈M

log

(
pMt (z,N)

pM2t (x,N)

)
. (29)

The curvature assumptions imply that there exist constants C1, C2 ≥ 0 such that the
sectional curvatures of planes containing the radial direction are bounded below by
−(C1 + C2rN )2 and so, by Theorem 5.1, there exists a constant c1 ≥ 0, depending only
on T,C1, C2,m and n, such that

pM2t (x,N) ≥ (2t)−
(m−n)

2 exp

[
−r

2
N (x)

4t
− c1(1 + r2

N (x))

]
(30)

for all x ∈ M and t ∈ (0, T ]. The assumptions also imply, by Theorem 5.6 and the
Chapman-Kolmogorov equation, that there exists a constant c2 > 0 such that

pMt (z,N) ≤ c2t−
m
2 (31)

for all t ∈ (0, T ] and z ∈ M . Substituting the estimates (30) and (31) in to (29) proves
the theorem.
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It follows that the gradient estimate (27) holds automatically if M is compact. Fur-
thermore, we can now prove the semimartingale property promised in Subsection 2.3.
As pointed out by Thalmaier, the semimartingale property should hold without any as-
sumptions on curvature. Güneysu proved this for the one point case using local estim-
ates on the heat kernel. We do not yet have such estimates for the integrated heat
kernel and so, for the time being, we make do with the assumptions of Theorem 6.2.

Corollary 6.3. Under the assumptions of Theorem 6.2, the coordinate process on the
bridge space Lx;N,T is a semimartingale with respect to the bridge measure Px;N,T .

Proof. It suffices to control the singularity in the drift close to the terminal time. Since
the distance function rN is defined as an infimum over N , it follows from (12) and
Lemma 2.2 that there exists ε, Cε > 0 such that Ex;N,T [r2

N (Xt)] ≤ Cε(T − t) for all
t ∈ (T − ε, T ]. Therefore, by Theorem 6.2, there exists C > 0 such that

Ex;N,T

[∫ T

T−ε
‖∇ log pMT−t(Xt, N)‖dt

]

≤
∫ T

T−ε
Ex;N,T

[
‖∇ log pMT−t(Xt, N)‖2

] 1
2 dt

≤
√
C

∫ T

T−ε

(
1

T − t
+

n

T − t
log

1

T − t
+
Ex;N,T

[
r2
N (Xt)

]
(T − t)2

) 1
2

dt

≤
√
C

∫ T

T−ε

(
1

T − t
+

n

T − t
log

1

T − t
+

Cε
T − t

) 1
2

dt

<∞

and the result follows.

Note that we could have derived our gradient estimate using assumptions slightly
weaker than those of Theorem 6.2, using Ricci curvature, the sectional curvature of
planes containing the radial direction and lower regularity of the volume measure. To
derive our Hessian estimate we need only add to these assumptions some suitable con-
trol on the curvature two-form and the derivative of the Ricci tensor. For simplicity,
however, we state our Hessian estimate, as we did the gradient estimate, in terms of
injectivity radius and the full curvature tensor. This way, our estimates can be easily
compared to that of Cheng, Li and Yau, stated above for the case in which the injectivity
radius of M is positive.

Corollary 6.4. In addition to the assumptions of Theorem 6.2 suppose also that the
first covariant derivative of the curvature tensor is bounded. Then for all T > 0 there
exists a constant C > 0 such that

‖Hess log pMt (·, N)x‖ ≤ C
(

1

t
+
n

t
log

1

t
+
d2(x,N)

t2

)
for all x ∈M and t ∈ (0, T ].

Proof. It was proved by Stroock in [38] that for any continuous positive function f there
exists C > 0 such that

t
‖Hess(Ptf)x‖

Ptf(x)
≤ C (1 + ht(x; f))

for all x ∈M and t ∈ (0, T ] where ht(x; f) is defined by (28). Choosing f = pMt (·, N), us-
ing the lower bound (30) and the on-diagonal upper bound (31) we obtain the corollary,
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by Theorem 6.2 and the fact that

Hess logPtf =
HessPtf

Ptf
− d logPtf ⊗ d logPtf

for all t > 0.

Note that the constant C appearing in this estimate depends only on the injectivity
radius of M , the length of the time interval T , the dimensions m and n and the bounds
on the curvature tensor and its derivative.

6.1 Further Applications

The results in this article, in particular the estimate on the Hessian, will lead to a study
of the space of continuous paths which end on a submanifold, intended to shed light on
the relationship between the geometry of the path space, the intrinsic geometry of the
ambient manifold and the extrinsic geometry of the submanifold.
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