2,224 research outputs found
The Ages of Elliptical Galaxies in a Merger Model
The tightness of the observed colour-magnitude and Mg- velocity
dispersion relations for elliptical galaxies has often been cited as an
argument against a picture in which ellipticals form by the merging of spiral
disks. A common view is that merging would mix together stars of disparate ages
and produce a large scatter in these relations. Here I use semi-analytic models
of galaxy formation to derive the distribution of the mean ages, colours and
metallicities of the stars in elliptical galaxies formed by mergers in a flat
CDM universe. It is seen that most of the stars in ellipticals form at
relatively high redshift (z > 1.9) and that the predicted scatter in the
colour-magnitude and Mg_2 - sigma relations falls within observational bounds.
I conclude that the apparent homogeneity in the properties of the stellar
populations of ellipticals is not inconsistent with a merger scenario for the
origin of these systems.Comment: latex file, figures available upon reques
The Evolving Faint-End of the Luminosity Function
We investigate the evolution of the faint-end slope of the luminosity
function, , using semi-analytical modeling of galaxy formation. In
agreement with observations, we find that the slope can be fitted well by
, with a=-1.13 and b=-0.1. The main driver for the evolution
in is the evolution in the underlying dark matter mass function.
Sub-L_* galaxies reside in dark matter halos that occupy a different part of
the mass function. At high redshifts, this part of the mass function is steeper
than at low redshifts and hence is steeper. Supernova feedback in
general causes the same relative flattening with respect to the dark matter
mass function. The faint-end slope at low redshifts is dominated by field
galaxies and at high redshifts by cluster galaxies. The evolution of
in each of these environments is different, with field galaxies
having a slope b=-0.14 and cluster galaxies b=-0.05. The transition from
cluster-dominated to field-dominated faint-end slope occurs roughly at a
redshift , and suggests that a single linear fit to the overall
evolution of might not be appropriate. Furthermore, this result
indicates that tidal disruption of dwarf galaxies in clusters cannot play a
significant role in explaining the evolution of at z< z_*. In
addition we find that different star formation efficiencies a_* in the
Schmidt-Kennicutt-law and supernovae-feedback efficiencies generally
do not strongly influence the evolution of .Comment: 4 pages, replaced with version accepted to ApJL, minor changes to
figure
Evolution since z = 0.5 of the Morphology-Density relation for Clusters of Galaxies
Using traditional morphological classifications of galaxies in 10
intermediate-redshift (z~0.5) clusters observed with WFPC-2 on the Hubble Space
Telescope, we derive relations between morphology and local galaxy density
similar to that found by Dressler for low-redshift clusters. Taken
collectively, the `morphology-density' relationship, M-D, for these more
distant, presumably younger clusters is qualitatively similar to that found for
the local sample, but a detailed comparison shows two substantial differences:
(1) For the clusters in our sample, the M-D relation is strong in centrally
concentrated ``regular'' clusters, those with a strong correlation of radius
and surface density, but nearly absent for clusters that are less concentrated
and irregular, in contrast to the situation for low redshift clusters where a
strong relation has been found for both. (2) In every cluster the fraction of
elliptical galaxies is as large or larger than in low-redshift clusters, but
the S0 fraction is 2-3 times smaller, with a proportional increase of the
spiral fraction. Straightforward, though probably not unique, interpretations
of these observations are (1) morphological segregation proceeds
hierarchically, affecting richer, denser groups of galaxies earlier, and (2)
the formation of elliptical galaxies predates the formation of rich clusters,
and occurs instead in the loose-group phase or even earlier, but S0's are
generated in large numbers only after cluster virialization.Comment: 35 pages, 19 figures, uses psfig. Accepted for publication in Ap
Decarboxylation of Carbon Compounds as a Potential Source for CO2 and CO Observed by SAM at Yellowknife Bay, Gale Crater, Mars
Martian carbon was detected in the Sheepbed mudtsone at Yellowknife Bay, Gale Crater, Mars by the Sample Analysis at Mars (SAM) instrument onboard Curiosity, the rover of the Mars Science Laboratory missio]. The carbon was detected as CO2 thermally evolved from drilled and sieved rock powder that was delivered to SAM as a <150-micron-particle- size fraction. Most of the CO2 observed in the Cumberland (CB) drill hole evolved between 150deg and 350deg C. In the John Klein (JK) drill hole, the CO2 evolved up to 500deg C. Hypotheses for the source of the the CO2 include the breakdown of carbonate minerals reacting with HCl released from oxychlorine compounds, combustion of organic matter by O2 thermally evolved from the same oxychlorine minerals, and the decarboxylation of organic molecules indigenous to the martian rock sample. Here we explore the potential for the decarboxylation hypothesis
Example Based Learning for View-Based Human Face Detection
We present an example-based learning approach for locating vertical frontal views of human faces in complex scenes. The technique models the distribution of human face patterns by means of a few view-based "face'' and "non-face'' prototype clusters. At each image location, the local pattern is matched against the distribution-based model, and a trained classifier determines, based on the local difference measurements, whether or not a human face exists at the current image location. We provide an analysis that helps identify the critical components of our system
Formation of Galaxy Clusters
In this review, we describe our current understanding of cluster formation:
from the general picture of collapse from initial density fluctuations in an
expanding Universe to detailed simulations of cluster formation including the
effects of galaxy formation. We outline both the areas in which highly accurate
predictions of theoretical models can be obtained and areas where predictions
are uncertain due to uncertain physics of galaxy formation and feedback. The
former includes the description of the structural properties of the dark matter
halos hosting cluster, their mass function and clustering properties. Their
study provides a foundation for cosmological applications of clusters and for
testing the fundamental assumptions of the standard model of structure
formation. The latter includes the description of the total gas and stellar
fractions, the thermodynamical and non-thermal processes in the intracluster
plasma. Their study serves as a testing ground for galaxy formation models and
plasma physics. In this context, we identify a suitable radial range where the
observed thermal properties of the intra-cluster plasma exhibit the most
regular behavior and thus can be used to define robust observational proxies
for the total cluster mass. We put particular emphasis on examining assumptions
and limitations of the widely used self-similar model of clusters. Finally, we
discuss the formation of clusters in non-standard cosmological models, such as
non-Gaussian models for the initial density field and models with modified
gravity, along with prospects for testing these alternative scenarios with
large cluster surveys in the near future.Comment: 66 pages, 17 figures, review to be published in 2012 Annual Reviews
of Astronomy & Astrophysic
Simulation of networks of spiking neurons: A review of tools and strategies
We review different aspects of the simulation of spiking neural networks. We
start by reviewing the different types of simulation strategies and algorithms
that are currently implemented. We next review the precision of those
simulation strategies, in particular in cases where plasticity depends on the
exact timing of the spikes. We overview different simulators and simulation
environments presently available (restricted to those freely available, open
source and documented). For each simulation tool, its advantages and pitfalls
are reviewed, with an aim to allow the reader to identify which simulator is
appropriate for a given task. Finally, we provide a series of benchmark
simulations of different types of networks of spiking neurons, including
Hodgkin-Huxley type, integrate-and-fire models, interacting with current-based
or conductance-based synapses, using clock-driven or event-driven integration
strategies. The same set of models are implemented on the different simulators,
and the codes are made available. The ultimate goal of this review is to
provide a resource to facilitate identifying the appropriate integration
strategy and simulation tool to use for a given modeling problem related to
spiking neural networks.Comment: 49 pages, 24 figures, 1 table; review article, Journal of
Computational Neuroscience, in press (2007
Evolution in the Disks and Bulges of Group Galaxies since z=0.4
We present quantitative morphology measurements of a sample of optically
selected group galaxies at 0.3 < z < 0.55 using the Hubble Space Telescope
(HST) Advanced Camera for Surveys (ACS) and the GIM2D surface
brightness--fitting software package. The group sample is derived from the
Canadian Network for Observational Cosmology Field Redshift survey (CNOC2) and
follow-up Magellan spectroscopy. We compare these measurements to a similarly
selected group sample from the Millennium Galaxy Catalogue (MGC) at 0.05 < z <
0.12. We find that, at both epochs, the group and field fractional bulge
luminosity (B/T) distributions differ significantly, with the dominant
difference being a deficit of disk--dominated (B/T < 0.2) galaxies in the group
samples. At fixed luminosity, z=0.4 groups have ~ 5.5 +/- 2 % fewer
disk--dominated galaxies than the field, while by z=0.1 this difference has
increased to ~ 19 +/- 6 %. Despite the morphological evolution we see no
evidence that the group environment is actively perturbing or otherwise
affecting the entire existing disk population. At both redshifts, the disks of
group galaxies have similar scaling relations and show similar median
asymmetries as the disks of field galaxies. We do find evidence that the
fraction of highly asymmetric, bulge--dominated galaxies is 6 +/- 3 % higher in
groups than in the field, suggesting there may be enhanced merging in group
environments. We replicate our group samples at z=0.4 and z=0 using the
semi-analytic galaxy catalogues of Bower et al (2006). This model accurately
reproduces the B/T distributions of the group and field at z=0.1. However, the
model does not reproduce our finding that the deficit of disks in groups has
increased significantly since z=0.4.Comment: Accepted for publication in MNRAS. 20 pages, 17 figure
The Evolution of Early-Type Galaxies in Distant Clusters III.: M/L_V Ratios in the z=0.33 Cluster CL1358+62
Keck spectroscopy and Hubble Space Telescope WFPC2 imaging over a 1.5x1.5 Mpc
field of CL1358+62 at z=0.33 are used to study the Fundamental Plane of
galaxies based on a new, large sample of 53 galaxies. First, we have
constructed the Fundamental Plane for the 30 E and S0 galaxies and find that it
has the following shape: r_e = sigma**(1.31+-0.13) * _e**(-0.86+-0.10),
similar to that found locally. The 1-sigma intrinsic scatter about this plane
is 14% in M/L(V), comparable to that observed in Coma. We conclude that these E
and S0 galaxies are structurally mature and homogeneous, like those observed in
nearby clusters. The M/L(V) ratios of these early-type galaxies are offset from
the Coma Fundamental Plane by delta log M/L(V) = -0.13+- 0.03 (q0=0.1),
indicative of mild luminosity evolution. This evolution suggests a formation
epoch for the stars of z > 1. We have also analyzed the M/L(V) ratios of
galaxies of type S0/a and later. These early-type spirals follow a different
plane from the E and S0 galaxies, with a scatter that is twice as large as the
scatter for the E/S0s. The difference in the tilt between the plane of the
spirals and the plane of the E/S0s is shown to be due to a systematic
correlation of velocity dispersion with residual from the plane of the
early-type galaxies. These residuals also correlate with the residuals from the
Color-Magnitude relation. Thus for spirals in clusters, we see a systematic
variation in the luminosity-weighted mean properties of the stellar populations
with central velocity dispersion. If this is a relative age trend, then
luminosity-weighted age is positively correlated with dispersion. [abridged
version]Comment: 18 pages, 8 figures; revised version, accepted by ApJ on 13 August
199
- …
