398 research outputs found

    Low cost silicon solar array project large area silicon sheet task: Silicon web process development

    Get PDF
    Growth configurations were developed which produced crystals having low residual stress levels. The properties of a 106 mm diameter round crucible were evaluated and it was found that this design had greatly enhanced temperature fluctuations arising from convection in the melt. Thermal modeling efforts were directed to developing finite element models of the 106 mm round crucible and an elongated susceptor/crucible configuration. Also, the thermal model for the heat loss modes from the dendritic web was examined for guidance in reducing the thermal stress in the web. An economic analysis was prepared to evaluate the silicon web process in relation to price goals

    Silicon web process development

    Get PDF
    Thirty-five (35) furnace runs were carried out during this quarter, of which 25 produced a total of 120 web crystals. The two main thermal models for the dendritic growth process were completed and are being used to assist the design of the thermal geometry of the web growth apparatus. The first model, a finite element representation of the susceptor and crucible, was refined to give greater precision and resolution in the critical central region of the melt. The second thermal model, which describes the dissipation of the latent heat to generate thickness-velocity data, was completed. Dendritic web samples were fabricated into solar cells using a standard configuration and a standard process for a N(+) -P-P(+) configuration. The detailed engineering design was completed for a new dendritic web growth facility of greater width capability than previous facilities

    Circuit Quantum Electrodynamics with a Spin Qubit

    Full text link
    Circuit quantum electrodynamics allows spatially separated superconducting qubits to interact via a "quantum bus", enabling two-qubit entanglement and the implementation of simple quantum algorithms. We combine the circuit quantum electrodynamics architecture with spin qubits by coupling an InAs nanowire double quantum dot to a superconducting cavity. We drive single spin rotations using electric dipole spin resonance and demonstrate that photons trapped in the cavity are sensitive to single spin dynamics. The hybrid quantum system allows measurements of the spin lifetime and the observation of coherent spin rotations. Our results demonstrate that a spin-cavity coupling strength of 1 MHz is feasible.Comment: Related papers at http://pettagroup.princeton.edu

    Can Plan Recommendations Improve the Coverage Decisions of Vulnerable Populations in Health Insurance Marketplaces?

    Get PDF
    OBJECTIVE: The Affordable Care Act's marketplaces present an important opportunity for expanding coverage but consumers face enormous challenges in navigating through enrollment and re-enrollment. We tested the effectiveness of a behaviorally informed policy tool--plan recommendations--in improving marketplace decisions. STUDY SETTING: Data were gathered from a community sample of 656 lower-income, minority, rural residents of Virginia. STUDY DESIGN: We conducted an incentive-compatible, computer-based experiment using a hypothetical marketplace like the one consumers face in the federally-facilitated marketplaces, and examined their decision quality. Participants were randomly assigned to a control condition or three types of plan recommendations: social normative, physician, and government. For participants randomized to a plan recommendation condition, the plan that maximized expected earnings, and minimized total expected annual health care costs, was recommended. DATA COLLECTION: Primary data were gathered using an online choice experiment and questionnaire. PRINCIPAL FINDINGS: Plan recommendations resulted in a 21 percentage point increase in the probability of choosing the earnings maximizing plan, after controlling for participant characteristics. Two conditions, government or providers recommending the lowest cost plan, resulted in plan choices that lowered annual costs compared to marketplaces where no recommendations were made. CONCLUSIONS: As millions of adults grapple with choosing plans in marketplaces and whether to switch plans during open enrollment, it is time to consider marketplace redesigns and leverage insights from the behavioral sciences to facilitate consumers' decisions

    ICBP90 belongs to a new family of proteins with an expression that is deregulated in cancer cells

    Get PDF
    International audienceICBP90 (Inverted CCAAT box Binding Protein of 90 kDa) is a recently identified nuclear protein that binds to one of the inverted CCAAT boxes of the topoisomerase IIalpha (TopoIIalpha) gene promoter. Here, we show that ICBP90 shares structural homology with several other proteins, including Np95, the human and mouse NIRF, suggesting the emergence of a new family of nuclear proteins. Towards elucidating the functions of this family, we analysed the expression of ICBP90 in various cancer or noncancer cell lines and in normal or breast carcinoma tissues. We found that cancer cell lines express higher levels of ICBP90 and TopoIIalpha than noncancer cell lines. By using cell-cycle phase-blocking drugs, we show that in primary cultured human lung fibroblasts, ICBP90 expression peaks at late G1 and during G2/M phases. In contrast, cancer cell lines such as HeLa, Jurkat and A549 show constant ICBP90 expression throughout the entire cell cycle. The effect of overexpression of E2F-1 is more efficient on ICBP90 and TopoIIalpha expression in noncancer cells (IMR90, WI38) than in cancer cells (U2OS, SaOs). Together, these results show that ICBP90 expression is altered in cancer cell lines and is upregulated by E2F-1 overexpression with an efficiency depending on the cancer status of the cell line

    A monoclonal antibody against kininogen reduces inflammation in the HLA-B27 transgenic rat

    Get PDF
    The human leukocyte antigen B27 (HLA-B27) transgenic rat is a model of human inflammatory bowel disease, rheumatoid arthritis and psoriasis. Studies of chronic inflammation in other rat models have demonstrated activation of the kallikrein–kinin system as well as modulation by a plasma kallikrein inhibitor initiated before the onset of clinicopathologic changes or a deficiency in high-molecular-mass kininogen. Here we study the effects of monoclonal antibody C11C1, an antibody against high-molecular-mass kininogen that inhibits the binding of high-molecular-mass kininogen to leukocytes and endothelial cells in the HLA-B27 rat, which was administered after the onset of the inflammatory changes. Thrice-weekly intraperitoneal injections of monoclonal antibody C11C1 or isotype IgG(1 )were given to male 23-week-old rats for 16 days. Stool character as a measure of intestinal inflammation, and the rear limbs for clinical signs of arthritis (tarsal joint swelling and erythema) were scored daily. The animals were killed and the histology sections were assigned a numerical score for colonic inflammation, synovitis, and cartilage damage. Administration of monoclonal C11C1 rapidly decreased the clinical scores of pre-existing inflammatory bowel disease (P < 0.005) and arthritis (P < 0.001). Histological analyses confirmed significant reductions in colonic lesions (P = 0.004) and synovitis (P = 0.009). Decreased concentrations of plasma prekallikrein and high-molecular-mass kininogen were found, providing evidence of activation of the kallikrein–kinin system. The levels of these biomarkers were reversed by monoclonal antibody C11C1, which may have therapeutic potential in human inflammatory bowel disease and arthritis

    Retarded PDI diffusion and a reductive shift in poise of the calcium depleted endoplasmic reticulum

    Get PDF
    Background: Endoplasmic reticulum (ER) lumenal protein thiol redox balance resists dramatic variation in unfolded protein load imposed by diverse physiological challenges including compromise in the key upstream oxidases. Lumenal calcium depletion, incurred during normal cell signaling, stands out as a notable exception to this resilience, promoting a rapid and reversible shift towards a more reducing poise. Calcium depletion induced ER redox alterations are relevant to physiological conditions associated with calcium signaling, such as the response of pancreatic cells to secretagogues and neuronal activity. The core components of the ER redox machinery are well characterized; however, the molecular basis for the calcium-depletion induced shift in redox balance is presently obscure. Results: In vitro, the core machinery for generating disulfides, consisting of ERO1 and the oxidizing protein disulfide isomerase, PDI1A, was indifferent to variation in calcium concentration within the physiological range. However, ER calcium depletion in vivo led to a selective 2.5-fold decline in PDI1A mobility, whereas the mobility of the reducing PDI family member, ERdj5 was unaffected. In vivo, fluorescence resonance energy transfer measurements revealed that declining PDI1A mobility correlated with formation of a complex with the abundant ER chaperone calreticulin, whose mobility was also inhibited by calcium depletion and the calcium depletion-mediated reductive shift was attenuated in cells lacking calreticulin. Measurements with purified proteins confirmed that the PDI1A-calreticulin complex dissociated as Ca2+ concentrations approached those normally found in the ER lumen ([Ca2+] K-0.5max = 190 mu M). Conclusions: Our findings suggest that selective sequestration of PDI1A in a calcium depletion-mediated complex with the abundant chaperone calreticulin attenuates the effective concentration of this major lumenal thiol oxidant, providing a plausible and simple mechanism for the observed shift in ER lumenal redox poise upon physiological calcium depletion.Wellcome Trust [Wellcome 084812/Z/08/Z]; European Commission (EU FP7 Beta-Bat) [277713]; Fundacao para a Ciencia e Tecnologia, Portugal [PTDC/QUI-BIQ/119677/2010]info:eu-repo/semantics/publishedVersio
    • …
    corecore