General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)

LOW COST SIL Large Area Silicon Shpet Task

ERDA/JPL $954654=77 / 2$
Distribution Category UC-63

SILICON WEB PROCESS DEVELOPMENT

SECOND QUARTERLY REPORT

July 1, 1977 - September 30, 1977
C. S. Duncan, R. G. Seidensticker,
J. P. McHugh, P. D. Blais, and J, R. Davis, Jr. Westinghouse Research \& Development Center Pittsburgh, Pennsylvania 15235

Contract No. NAS 954654

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology; under NASA Contract NAST-100 for the U. S. Energy Research and Development Administration, Division of Solar Energy.

The JPL Low-Cost Silicon Solar Array Project is funded by ERDA and forms part of the ERDA Photovoltaic Conversion Program to initiate a major effort toward the development of low-cost solar arrays.
(NASA-CR-157098) SILICON WEB PROCESS N78-24646
DEVELOPMENT Guarterly Report, 1 Jul. - 30
Sep. 1977 (Hestinghouse Electric Corf.)
73 p HC A04/MF AO1 CSCI 10A
G3/44 20702

This report contains information prepared by WESTINGHOUSE ELECTRIC CORPORATION under JPL subcontract. Its content is not necessarily endorsed by the Jet Propulsion Laboratory, California Institute of Technology, National Aeronautics and Space Administration or the U. S. Energy Research and Development Administration, Division of Solar Energy.

Abstract

Thirty-five (35) furnace runs were carried out during this quarter, of which 25 produced a total of 120 web crystals. Lengths in excess of two meters and widichs over 27 mm were achieved. A variety of lid and suseeptor configurations have been used to modify the thermal geometry of the system in an effort to grow wider and longer web crystals of high quality.

The two main thermal models for the dendritic growth process have been completed and are being used to assist the design of the thermal geometry of the web growth apparatus. The first model, a finite element representation of the susceptor and crucible, has been refined to give greater pracision and resolution in the critical central region of the melt. The second thermal model, which describes the dissipation of the latent heat to generate thickness-velocity data, has been completed. Both models have been validated by comparison of predicted results with experimental data; both are in excellent agrecnent with reality. The second model also gives temperature distributions in the growing web so that it can be applied to the evaluation of thermally generated stress in the crystal.

Width versus length date generated for dendritic web crystals Indicate that the widening rates of the crystal are related to the lid design, however, the differences between most of the lid configurations are relatively small. More importantly, the data indicates that even in the current system which has only a 76 mm diameter crucible, ultimate widths of dendritic web crystals should be in the 30 to 40 mm range. Thickness measurements on the crystals being grown are in excellent agreement with the predictions of the thermal model, and modifications of the lid designs to increase the growth velocity are being investigated.

As longer and wider web is being grown, strain in some crystals has been noted. In these cases growth runs are intentionally terminated because of crystal warpage, rather than because of temperature fluctuations as in the past. Residual stress measurements based on crystal splitting are being made in some of the crystals being grown and these results will be correlated with predictions of the thermal mode1s. The models will then be used to generate susceptor lid configurations producing smaller th rmal stresses in the growing crystal.

In addition to the residual stress measurements, both x-ray topographic and etching examinations have been made on wei srystals. To date, the results confirm earlier conclusions that most dislocations are generated in either the initial button or in the bounding dendrites. These studies are being continued to correlate crystal perfection with the growth conditions and with solar cell performance.

Dendritic web samples have been fabricated into solar cells using a standard cell configuration and a standard process for a $\mathrm{N}^{\dagger}-\mathrm{P}-\mathrm{p}^{+}$ configuration. The data indicates that web material can make very good solar cells with AML efficiencies greater than 14%. In a given fabrication run, cells made from a given crystal have almost identical characteristics. Further, analysis of the cell characteristics indicates that \mathbb{N}^{+}- P junction on web cells is of extremely high quality. Work is presently in progress to correlate the cell performance with the material quality. Studies are also underway to develop improved processing techniques for dendritic web material.

The detafled engineering design was completed for a new dendritic web growth facility of greater width capability than previous facilities. Fabrication of component parts and assembly have begun.

TABLE OF CONTENTS

Pagu

1. INTRODUCTION 1
2. TECUNICAL DISCUSSION 3
Experimental Web Growth 3
Thermal Modeling Related to Dendritic Web Growth 4
Mechanical and Dimensional Characterization 10
Web Thickness 15
Residual Stress 15
Crystal Perfection Studies 18
Solar Cell Studies 18
Facility Design and Construction 25
3. PLANS FOR THE NEXT PERIOD 26
4. NEN TECHNOLOGY 27
5. REFERENCES 28
6. APPENDIX 29
6.1 Growth Run Detail Sumary for this Reporting Period 30
6.2 Complete Set of Design Drawings for Silicon Wel Growth Facility 37

LIST OF ILLUSTRATIONS

Page
Figure 1 Lid Slot Geometries 5
Figure 2 Calculated Temperatures on Melt Surface 7
Figure 3 Thickness-Velocity Behavior 9
Figure 4 Typical Dendritic Web Widening 14
Figure 5 Standard Solar Cell and Test Pattern Design 19
Figure 6 Dendritic Web and Baseline Czochralski Cells 20
Figure 7 Solar Cell Run Sheet 22
Figure 8 Sample Data Print-Out 23
LIST OF TABLES
Table 1 Dendritic Web Widening Rates 11
Trble 2 Stress Data for Web Samples 17

1. INTRODUCTION

The overall intent of this program is to further develop the dendritic web crystal growth process to the extent that it supports the economic goals of the Large Area Silicon Sheet Task of the Low-Cost Silicon Solar Array Project.

The ability of this process to produce crystals for high efficiency solar cells, 14 percent AM-1 or higher, is well known and has been demonstrated in pilot production and in this program. The prior state of development of the process did not, however, have sufficient throughput to satisfy the cost goals of the LSSA Project.

Consequently, a key goal of this program is to increase the throughput of the process in terms of greater width (to 7.5 cm), greater speed (to $7.5 \mathrm{~cm} / \mathrm{min}$) and greater length (to >10 meters) within the web thickness range of 100 to $200 \mu \mathrm{~m}$. These goals are being sought via two growth facilities: an existing facility which is undergoing continued development and a new facility now in the construction and assembly phase.

The existing facility has produced crystals to 2.7 cm width and 3 meters length. Growth rates for useful material in the range of 100 to $200 \mu \mathrm{~m}$ thickness have reached $2.5 \mathrm{~cm} / \mathrm{min}$ although some experimental growth at rates as high at $10 \mathrm{~cm} / \mathrm{min}$ have been achieved for very thin web. The goal of this phase of the program is to achleve a growth width equal to the 5 cm dimensional capacity of the facility and a growth rate of $5 \mathrm{~cm} /$ minute. Both facilities have provision for adding polycrystalline silicon feed material to the melt for achleving a quasi-continuous growth.

The new facility, when compieted, will have capacity to meet the full throughput goals stated above. The growth run experiments with both facilities will be used to identify the necessary on-line process parameter measurements and control.

Computer thermal models are a critical factor in the successful development of the process. The models are verified and refined initially by temperature measurements of sensors located in the thermal system and subsequently by correlation with actual web growth results. As the program progresses, a large volume of data is being generated and related to growth conditions, crucible system geometry, crystal quality, etc.

During the process development period with both facilities the web crystals grown will be used for several purposes. The growth is routinely selected and evaluated in terms of its dimensional, crystalline, electronic, and solar cell properties. For solar cell evaluation a "standard" fabrication procedure suitable for web crystals is used. Crystals are also provided for another program goal which is developing improved solar cell fabrication techniques especially suited to web crystals. Finally, selected web crystals and solar cells are being sent to JPL.

Growth ruis will also be performed to determine the interaction of controlled amounts of selected impurities with growth conditions and parameters. This evaluation will be performed in a third web growth facility which is also used for other web programs.

As the program progresses, an economic analysis will be developed and updated in response to continued process development.

2. TECHNICAL DISCUSSION

Experimental Web Growth

The major objectives of the work during this reporting period have been (1) to improve the thermal geometry as required to increase web width, (2) to gather baseline thermal data both for system characterization and for input to the thermal modeling, (3) to verify experimentally the results of the thermal modeling, and (4) to grow web material for evaluation and solar cell processing.

During this reporting period, 35 furnace runs were made, of which 25 were productive web growth runs. A total of 120 identified web crystals were grown. Pertinent data for each is tabulated in Section 6.1. Continuous lengths of over two meters and widths over 27 um were obtained.

The expertmental procedures in the web growth runs have involved systematic variations in lid and susceptor conflgurations so as to alter heat losses and thus refine the thermal geometry of the melt in an effort to grow wider web crystals. In order to strengthen the data base, configurational features, e.g., slot geometry, are sometimes used which are not necessarily expected to be productive from a web throughput point of view, but provide valuable information as part of a systematic series of changes. We feel that this approach provides an extended data base which will be very beneficial in the long run. In addition, this approach permits us to test and verify the results of the thermal modeling. Thus, we have established a consistency between experiment and modeling results which give confidence in the usefulness of the modeling for guidance in future design changes.

As longer and wider web crystals have been grown, we have observed in some cases crystal deformation due to thermally induced strain. This has resulted in prematurely terminating the crystal
growth while the web was sfill widening. Thus the full width capabilities of our experimental configurations have not yot been realized. This factor introduces an extra thermal requirement in the design of experimental configurations in addition to maximizing web width. The origin of the thermally induced strain and strategies for minimizing its harmful effects are discussed in more detail later in this report.

Crucibles fabricated by Amersil Corp, have been obtained and used during this period. These have substantially improved run-to-run reproducibility by minimizing the variations in fit between crucible and susceptor which had plagued us previously.

Thermal Modeling Related to Dendritic Web Growth

In the present development program two separate thermal models are being developed as design tools to facilitate the development of appropriate crucible and susceptor configurations. The first model, which calculates the three dimensional temperature distribution in the susceptor and melt, has as its goal the development of a temperature distribution conducive to the growth of wide dendritic web. The second model, which analyzes the dissipation of the latent heat of fusion both to the web itself and to the supercooled melt, has as its main goal the development of a slot geometry conducive to increased growth velocity. This model also provides the" basic temperature data necessary for an analysis of any thermally induced stress in the growing ribbon.

During this quarter, the first model was completed and temperature distributions were calculated for a series of lid slot geometries, some of which are shown in Fig. 1. These initial results showed considerable scatter in the temperature plot, a "grain" which was attributed to the rather oarse net of connections used to model the radiation transfer from the melt surface. The melt surface was modeled as a rather large number of elements, and several elements were grouped to a single radiation link. Initially, it was thought that the "grain"

Dwg. 6420A80

Fig. 1 - Lid slot geometries
ia the butpat eould be tolerated and reationable results obtained by awerging the points. In one instanes, however, the calculations showed an umigtabale temperacure minimu in the temperature profile when there was no physical reason for such a minimum to occur. Since a modest amount of precision if not accuracy was de;ired, especially near the ceater wi the melt, the model was refined by making radiation links to every burface node. Thene three link repregented the radiation transfer to the slot, to the lid, and to the wall of the susceptor above the melt. Ghen this modified version of the model was run, the scatter in the temperature profiles was essentially eliminated and the unexpected mindmum was not observed. Two typical melt surface temperature profiles ar" shown in Fig. 2. One of the profiles is for the lid geometry with slot 1 , and the other profile is for slot 5, a modification of slot 2 where the total length has been increased to 70 mm . Also shown in Fig. 2 is the tomperature profile along a radius perpendicular to the slot. This profile is essentially the same for both slots. It can be seen that the temperature profile parallel to the slot is essentially flat for 1 to 1.5 cm either side of center, which is consistant with the observation that the web continues to widen even at 27 mn total width.

It shotild be noted that the temperatures plotted in Fig. 2 are "adjusted temperatures;" the somputed temperatures have been adjusted to give $1685^{\circ} \mathrm{K}$ at the center of the slot. Although measured temperatures in the susceptor wall have been used as the boundary conditions for the model there is some uncertainty in the actual thermocouple calibrations, etc, and the actual calculated temperatures differ by about 6° from the measured temperatures in a system. From a thermal model standpoint, this differential is not significant, and considering the uncertainties in the thermal constants of the materials, especially the heat transfer from the molybdenum susceptor to the silicon melt, this agreement seems excellent.
Curve 692283-A

Fig. 2-Calculated temperatures on melt surface

These results seem to validate the thermal model and it can now be used as a design tool for further development of susceptor and lid configurations. Two extensions of the model are presently under development. The first is a circular crucible and susceptor similar to the present design but with a 106 mm diameter crucible instead of the present 79 mm crucible; the susceptor dimensions are unchanged (see Drawings 1689B31, items 1 and 2, and Drawing 8520D49). In addition, an elongated crucible and susceptor are being modeled (Dravings 8520D52 and 1691862).

The second thermal model describes the modes of dissipation of the latent heat of freezing in order to develop thermal designs for faster growth. As with any ribbon growth technique, part of the latent heat is dissipated through the growing ribbon itself. In addition, since dendritic web grows from a supercooled melt, some of the latent heat is dissipated to the liquid silicon. Both heat loss modes have been modeled, and a thickness-velocity curve has been generated for a lid configuration which has actually been used to grow wh . comparison of the experimentally observed thickness-velocity data with \mid ? predictions of the model is shown in Fig. 3. It can be seen that the p eement between theory and experiment is excellent, which gives a high d aree of confidence both for the overall model and for the individual components of the model.

The particular lid de:sign for the case shown in Fig. 3 was the starting geometry in a series of experiments on the effect of beveling the edges of the slot. The lid was relatively thick (8 mm) and had no bevel on the slot. As can be seen, this low heat loss condition gave relatively slow grewth, e.g., a $150 \mu \mathrm{~m}$ web would grow at only $1.3 \mathrm{~cm} / \mathrm{min}$. A $3 \mathrm{~mm} \times 3 \mathrm{~mm}$ bevel on the slot increased this velocity to about $2 \mathrm{~cm} / \mathrm{min}$, and a $6 \mathrm{~mm} \times 6 \mathrm{~mm}$ bevel increased the velocity to about $3.5 \mathrm{~cm} / \mathrm{min}$. \ln addition to such parameters as the effective lid thickness (slot bevel), the thermal model also indicates that other parameters such as lid temperature, top shield temperature, slot width, melt level below lid, etc. can be used to tailor the temperature profile in the growing web.

Curve 692282-A

Fig. 3-Thickness - velocity behavior

Since these factors all produce a multitude of other interactions in the growth behavior, continued study and development is necessary to arrive at a configuration which could be considered optimum.

Mechanical and Dimensional Characterization

In keeping with the program emphasis on the growth of wide dendritic web, much of the material characterization has been dimensional. The widening rate of the crystals is of particular interest, as well as the steady state width for a given system configuration. The widening rate data for the crystals grown during the quarter is shown in Table 1 , both in terms of $d W / d L$ and $d W / d t$. There is a moderate amount of scatter in the data, but some trends can be discerned. First, the first crystals pulled during a run tend to have the fastest widening rates. This apparently has to do with the level of the melt belov the crucible lid which in turn affects the heat loss from the meniscus. Second, crystals pulled from melts having beveled slots in the lid widen faster than crystals pulled through unbeveled slots. This apparently is the result of modification of the heat loss from the meniscus at the edges of the dendritic web. The variations in slot geometry should have little effect on the temperature distribution near the center of the melt as a whole, but could have a somewhat greater effect on the heat loss from the meniscus regions. A variety of slot designs are being considered for other reasons and the effect on the widening rate will be studied.

Perhaps more important than the widening rate itself, is the tendency for the crystals to reach a steady state width. In most instances, the dendritic webs are continuing to widen when growth is purposely terminated. Although in some instances a tendency for steady state width is seen, most widening behavtur is exemplified by the width-length curve shown in Fig. 4 for crystals R172-4 and R172-6. This result is consistant with the calculated melt temperature profile for slot 5 shown in Fig. 2. Even with a 76 mm diameter crucible, the

Table 1
Dendritic Web Widening Rates

Table 1 (cont.)
Dendritic Web Widening Rates

Crystal Number	$\begin{aligned} & \text { Widening } \\ & \text { Rate } \\ & 10^{3} \times \frac{\mathrm{dW}}{\mathrm{dL}} \end{aligned}$	Thickness $\mu \mathrm{m}$	Widening Rate $\begin{aligned} & 10^{3} \times \frac{\mathrm{dW}}{\mathrm{dt}} \\ & \mathrm{~cm} / \mathrm{min} \end{aligned}$	Remarks
154-1	8.14	150	15.0	
154-2	7.92	150	14.3	
154-3	6.14	155	11.9	
154-6	5.76	165	9.6	
156-1	6.90	160	13.4	Dogbone slotted lid; 6.3 mm wide terminated by 12.7 mm dia. holes on 44.5 mm centers; $3 \times 3 \mathrm{~mm}$ bevel. (oxide problems)
156-2	4.80	168	9.3	
156-3	5.54	150	10.5	
157-1	7.78	165	15.1	"
157-3	7.78	140	15.1	
157-4	4.80	122	8.7	
160-1	8.65	210	18.0	"
160-2	8.67	165	16.8	
160-3	7.80	170	14.0	
163-1	8.30	146	15.6	Straight slot, 6.4 mm wide by 66.6 mm long. No Level.
163-2	7.00	120	12.6	
165-1	7.80	145	15.1	
165-2	6.40	162	11.5	"

Table 1 (cont.)

Dendritic Web Widening Rates

| Crystal
 Number | Widening
 Rate
 $10^{3} \times \frac{\mathrm{dW}}{\mathrm{dL}}$ | Thickness
 $\mu \mathrm{m}$ | Widening
 Rate
 $3^{3} \times \frac{\mathrm{dW}}{\mathrm{dt}}$
 $\mathrm{cm} / \mathrm{min}$ | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $170-1$ | 7.76 | 173 | 15.1 | Straight slot, 6.4 mm wide by
 66.6 long. No bevel. |
| $170-2$ | | | | |

ultimate steady state width for dendritic web has not yet been reached. Data from runs where some curvature is seen in the W-L curve leads to an estimate of 30 to 40 mm as the steady state width for the present system. This would be consista:at with the calculated thermal profiles.

Web Thickness

The thickness of a web crystal growing at a given velocity depends on the supercooling of the melt and on the ability of the web itself to radiate heat. Both of these factors were included in the thermal modeling for the velocity-thickness calculations, and it was found that such factors as the lid thickness and bevel on the slot should have a strong effect. Web thickness measurements have, therefore, been directed toward validating the thermal model; specific data is given in Table 1 with the widening rate data and in the run summary, Appendix 6.1. For practical reasons, the growth velocity for most runs is adjusted to give crystal thicknesses between 100 and $200 \mu \mathrm{~m}$.

Residual Stress

Strain in dendritic web crystals is becoming an increasingly important consideration as longer and wider crystals are being grown. Early in the program, the growth of many crystals terminated spontaneously because of what we believe to be convectively generated temperature fluctuations in the melt. With improvement in thermal conditions, this phenomenon has become rare and instead some crystals develop a warp and twist after several meters of growth and the pull must be terminated in order to remove the crystal through the withdrawal duct. This behavior is suggestive of the thermally generated stress found by people working with other ribbon growth techniques in that the problem is accentuated in wider crystals. An excellent general discussion of the phenomenon is given in the Mobil-Tyco Annual Progress Report of September, 1976.

Briefly, a non-1inear temperature profile along the 1ength of the growing ribbon can cause stresses which in turn can produce both plastic and elastic deformations in the ribbon. These stresses are functions of both the ribbon width and the higher derivatives of the temperature profile. For example, a major component of the axial stress is given by

$$
\sigma_{z z}=\frac{\alpha Y W^{2}}{6}\left(1-3 \frac{y^{2}}{W^{2}}\right) \frac{d^{2} T}{d z^{2}}
$$

where α is the thermal expansivity, Y is Young's modulus, W is the half Width of the ribbon, the z coordinate is along the length of the ribbon and the y coordinate is in the plane of the ribbon perpendicular to z. Other stress components depend on higher derivatives and also have a higher power in the width dependence. Thus as wider ribbons are grown, thermal stresses should become of increasing importance. In order to reduce the stress ia che growing crystal, the curvature of the temperature profile must be reduced. Other ribbon growth techniques accomplish this flattening of the temperature gradient by the use of after heaters; in the dendritic web tecinique, the thermal analysis developed for increasing the velocity also shows that a great deal of control over the temperature profile is possible by careful design of the susceptor cover. In fact, in some instances, the second derivative, $d^{2} T / d z^{2}$ is actually negative over a portion of the crystal near the melt; the hot slotted lid actually is heating the web.

The experimental study of the residual stress in dendritic wet crystals has only recently been started. The technique which has been used to characterize any residual stress in the dendritic web is the well known method of measuring the curvature of a ribbon which has been split down the center. The relevant equation is

$$
\sigma=\frac{Y W}{4} b_{2}
$$

where σ is the stress (before splitting, the ribbon has a tension σ at the edges, and a sompression $-\sigma$ at the center), Y is Young's modulus, W is the total width of the ribbon and b_{2} is the coefficient in quadratic expression for the width of the split as a function of length

$$
y=b_{0}+b_{1} x+b_{2} x^{2}
$$

Here y is the separation between the two halves of the crystal and x is a coordinate along the length of the crystal. Fitting the experimental data to this quadratic form removes a variety of experimental uncertainties such as the origin of the crack, and any possible tilt in the x axis or constant separation of the two pieces of the crystal. In practice, the actual data shows a coefficient of determination of 0.998 or better, Indicating an excelilent agreement of the experiment to the assumed model. Data for some of the web samples is shown in Table 2. The stress values seem to be generally smaller than reported for other ribbon growth techniques. Although it may be a fortuitous result, the crystal with the lowest residual stress was grown with a lid which should have had a smaller $d^{2} T / d z^{2}$ than the other lids. Further design studies and experiments along this direction are being undertaken.

Table $\hat{2}$

Crystal No.	Width cm	Thickness um	Growth Speed $\mathrm{cm} / \mathrm{min}$	Residual Stress dynes $/ \mathrm{cm}^{2}$	Residual Stress psi
R136-9	1.60	188	1.94	2.4×10^{8}	3480
R153-1	1.65	170	1.94	2.0×10^{8}	2915
R160-2	2.28	165	1.94	2.1×10^{8}	3090
R165-4	1.52	84	1.94	1.9×10^{8}	2712
R172-5	1.46	173	1.80	1.0×10^{8}	1522

Grybtal Perfection Studies

To date, only a limited amount of study has been given to the crystalline perfection of the dendritic web crystals. A limited number of x-ray topographs and etching studies have been done, however, and so far the results are in agreement with the observations of earlier investigators. (2-6) Dislocations apparently arise primarily from two sources: the button portion of the crystal, and as bursts in the bounding dendrites. Various possible techniques will be investigated for reducing these imperfections in the crystal. Although the thermal stress may be a significant factor in the degeneration of the web crystals, other mechanisms involving dislocations cannot be ruled cut, and these studies will be continued at an accelerated pace.

Solar Cell Studies

Since solar cells are the anticipated end product of a dendritic web crystal growth process, solar cell studies are being conducted as part of the overall growth program. Two general tasks are being undertaken in the solar cell area: 1) the use of a standard cell design and fabrication process to provide an evaluation of the material on a semi-routine basis and 2) an investigation of techniques for improving the efficiency of solar cells made on dendritic web.

The solar cell design chosen as a standard for material evaluation is one that has been in use for some while in other studies. The general design of the test device is shown in Fig. 5. This design was originally intended for making standard test cells on Czochralski material, and contains a number of test devices in addition to the 1 cm square cell in the center of the pattern. When this mask is used for fabricating devices on dendritic web material, only the central portion of the patterns is used. A typical dendritic web cell and a "baseline" cell on a Czochralski wafer are shown in Fig. 6.

Fig. 5- Standard solar cell and test pattern design

Fig. 6 Dendritic Web and Baseline Czochralski Cells

The device procesoing technique being used for cell fabrication is also very oimilar to that being used for other studies, with several small changes appropriate to the web material being processed. First, the web surface is in a higily perfect condition as grown, so no other surface preparation other than an oxide removing rinse is done. More importantly, since the material being grown on this program is of the order of 150 um thick (6 mils), the cell structure includes a p^{+}layer on the back surface to provide a minority carrier reflecting back surface field (BSF). The entire process is summarized in the sample run sheet shown as Fig. 7. In a given fabrication run, the individual cell blanks are identified so that material from several crystals can be run and separately identified. Also included in every run are five Coochralski wafers run as baseline material to give a check on the processing reproducibility.

Once the cells are fatricated, they are measured under simulated AM1 illumination and the data fed to a computerized data bank for reduction and printout of the device characteristics. A typical printout is shown in Fig. 8. The Baseline cells are identified by a " B " in their' ID, and dendritic web cells by an " R " (except for $1 R$ " which is a standard cell for calibrating the light s urce). An asterisk by the ID means that sample was not used in calculating the group averages. ISC is the short circuit current; VOC the open circuit voltage; IP the peak power; FF the fill factor, EFF is the efficiency and $O C D$ is a lifetime measured from the diode decay of the device. The other data, LOG(IO), N, and R are parameters used in fitting the data to a standard model. The computeprogram computes the parameter averages and standard deviations for the baseline cells and the experiment cells and also gives percent of baseline for the experiment cell averages.

Generally, the solar cells fabricated on this program are measured without an anti-reflectance (AR) coating; if an AR coating is used, it is noted on the data printout. Several sets of cells have

ORIGINAL PAGE IS
 OF POOR QUALITY

$70621 H$ KIHON 1003 KETEST WO71 00000 KIBON 10／PO／77 AMI： $\mathrm{FO}=91.60 \mathrm{CH} / \mathrm{CM}^{\circ}$ ？

A \bar{n} COATING

ID	I SC	voc	I P	LOG（10）	N	i	FF	EFF	0007
$1 \mathrm{~K}^{4}$	22．50	． 549	20．11	－6．162	2.03	－． 34	． 717	9.30	． 00
1 B	31.00	－ 579	28.77	－8．419	1.40	－ 21	－ 765	14.51	$15 \cdot 60$
2 B	32.50	－ 58.3	30.19	－8．527	1.38	－ 28	． 764	15.31	19.50
38	31.00	－ 569	28－72	－8．8．16	1.42	－ 14	－ 763	$14 \cdot 2.4$	$1 P \cdot 35$
4 ${ }^{*}$	23.90	－ 524	14.99	－4．686	2.86	10.86	． 345	4.56	－00
5B．＊	31.40	． 547	28．90	－6．697	1.76	－1．67	． 807	14.65	1.3 .00
1 k	30.40	． 561	28.32	－8．950	1．2．6	． 49	． 762	13．75	9.10
5 k	29.30	． 542	26．72	－6．945	1.67	－．$P 7$	． 746	12．53	4.94
6h	29．80	． 539	26.94	－6．498	1.81	－－${ }^{-9}$	－ 732	12.44	1．8？
8 K	29.60	． 538	24.92	－4．011	3．62	-2.73	.677	11.40	3.38
AVEMAGES：7062iF RASELINE W07100 000									
STD	31．50	． 577	29.23	－8． 387	1.40	－ 21	－ 764	14.69	15．82
	－ 71	． 006	－68	－ 129	． 01	－ 06	． 001	－ 45	0.92
	7062	21H K1	IBON 10	3 tiE．TE					
	29.78	． 545	26．72	－6．601	2． 09	－． 70	． 729	12．53	4.81
STD	． 40	－ 009	1．21	1．758	． 90	1－？？	．032	． 83	P． 71
PEHCENT OF BASFLI									
	94.59	94．5	91.4	121.3	149	がれは年	95．5	85.3	30.4
STD\％	$3 \cdot 4$	2． 6	6.4	22．5	67	R14．？	4．3	8．5	25.9

Fig． 8 Sample Data Print－Out
been measured before and after a standard $A R$ coating of $850 \AA$ of Sio and the results indicate that the efficiency of the cell is increased by $41.2 \pm 2 \%$. A cell with an ANI efficiency of 10.2% uncoated, will thus yield a 14.4% cell when coated. Therefore, in order to facilitate comparison of our data with cell data from other sources, we will report cell efficiencies converted to $A R$ coated values unless otherwise noted.

Several general conclustons can be stated from the data generated so far. First, within a cell fabrication run, data from a F'ven dendritic web crystal clusters very tightly. This would indicate -iat solar cell parameters are a valld means for characterizing the web material. Cell data from a given crystal processed in different runs is somewhat more scattered, but still is renresentative of the crystal. Second, dendritic web can be processed into extremely good solar cells; some crystals yield devices with greater than 14% AMl efficiency. Conversely, web samples chosen from crystals with obvious defects such as lineage or mosaic structure yield cells with only about 10.3% efficiency. Moderate quality material yields cells in the 12 to 13 percent range. Studies are now in progress to correlate solar cell performance with the structural perfection of the starting material.

The second aspect of the solar cell program is to develop processing techniques for dendritic web which will yield solar cells with higher efficiency. The current approach to this task is to consider that the processing of dendritic web ts the same as for Czochralski material if due account is taken of the generally smaller thickness of the web. Studies so far indicate that the actual junction on the web is of extremely high quality. Attention is, therefore, being given to the matter of the back surface P^{+}layer. Presently this is being fabricated by a boron diffusion process, which has an industry reputation for some variability. A process based on an aluminum doped back surface is under Investigation. This process has the promise of greater reproducibility as well as possibly providing optical as well as electrical reflection
at the cell back surface. Since solar cells with greater than 14% efficiency have already been processed with the boron technique, enhanced optical reflectivity could bring this figure above 15%. Currently, equipment and materials are being set up to implement this process.

Facility Design and Construction

Design has been completed for a new web growth facility which will have dimensional capacity for web widths to four inches. Mechanical and electrical design of the system closely follows the concept of the most recent existing facility and is scaled up where needed to satisfy the greater dimensional requirements. The thermal design of the system is based upon thermal models and recent experience. Fabrication of components and assembly are in progress.

A conceptual design has been developed to permit: at some possible future time, conversion of the new facility from low frequency induction heating to more conventional and lower cost resistance heating.

The existing web growth facility is in the process of being modified to permit web growth of width up to three inches.

3. PLANS FOR THE NEXT PERIOD

Systematic changes in susceptor and lid configuration aimed at maximizing web width and minimizing thermally induced strain will be conlinued, utilizing guldunce from the thermal modeling results.

The experimental effort to date has utilized 75 min diameter crucibles. Crucibles of 100 mm diameter have been ordered and will be tested in the near future.

Thermal models of two new crucible/susceptor configurations will be completed and applied to the design of appropriate hardware. The first new design will be a circular crucible/susceptor with a 100 mm ID crucible. the second will be an clongated susceptor for use in the new web growth faci.ity. The second thermal model (model of latent heat dissipation) will be applied to the problem of reducing curvature in the temperature profile in the web. The object will be to reduce possible thermal stress in the growing crystal.

Much of the characterization of the dendritic web will stili be of a dimensional character. In addition, measurement of residual stress in appropriate sample will be continued to evaluate the effect of lid design. Similarly measurement of crystalline perfection will be continued and expanded. Solar cell fabrication to characterize the dendritic web material will be continued.

The new web growth facility will be completed and placed in operation. The existing facility will be modified to provide greater capacity.
4. NEN TECHNOLOGY

No new technology occurred during this reporting period.

5. REFERENCES

1. A. D. Morrison, et al., "Large Area Silicon Sheet by EFG," Annual Progress Report, ERDA/Jri 94355/76-11, Sept. 15, 1976.
2. D. L. Barrett, et al., "Growth of Wide, Flat Crystals of Silicon Web," J. Electrochem. Soc. 118, 952 (1971).
3. S. o'Hara, "Dislocations in Webs of Germanium and Silicon," J. App 1. Phys. 35, 409 (1964).
4. S. O'Hara and G. H. Schwut Silicun Web-bendrite Crystals," J. Appl. Phys. 24ラ (1965).
5. T. N. Tucker and C. H. Schwut tke, "Growth of Dislocation Free Silicon Web Crystals," App1. Phys. Lett. 9, 219 (1966).
6. T. N. Tucker, "Topography of Silicon Web Crystal Surfaces," Electrochemical Technology 4, 546 (1906).
7. R. H. Hopkins, et al., "Silicon Materiais Task of the Low Cost Solar Array Project: Fifth Quarterly Report and Summary," ERDA/JPL 954331-77/1, (1977).

6. APPENDIX

6.1 Growth Run Detail Sumary for This Rerorting Period
6.2 Complete Set of Design Drawings for Silicon Web Growth Facility

Yeb No.	$\begin{aligned} & \Delta \mathrm{T} \\ & { }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Pull Rate $\mathrm{cm} / \mathrm{min}$	GROWTH Length cm	RUN DETAIL Width mm	MARY Thickness \qquad
Dry run to test temperature stability and response time					
1	4.4	2.2	75	12.5/16.7	203
2	4.8	2.2	18	14.2	190
3	4.7	2.2	16	12.5/14	168
4	5.4	2.2	32	13.5/15.1	147
5	-	2.2	13	14.2/15.2	145
6	5.9	2.1	81	13/17.4	152
7	4.5	2.0	134	11.7/13	145
1	4.8	2.1	59	12.6/16.6	250
2	4.7	2.0	75	12.7/16.4	212
3	5.0	2.0	39	15/15.8	160
4	3.9	2.0	84	$14.7 / 20.2$	212
1	5.2	2.0	28	12/14.2	183
2	4.7	1.8	32	15/16.8	208

Run No.
$R-139$
$R-140$
$R-141$
$R-142$

[^0]

ORIGINAL PAGE IS OR POOR QUALIIY

Bun No,	Heb No.	GRGWTH RUN DFTAIL SUEDARY					Comments
		$\begin{aligned} & \Delta \mathrm{T} \\ & { }^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	Pull Rate cq/min	Length cm \qquad	$\begin{aligned} & \text { Width } \\ & \text { minn } \\ & \hline \end{aligned}$	Thickness \qquad $\mu \mathrm{m}$	
R-154	1	3.9	1.9	111	8.8/16.5	150	Accumulate more growth experience on repeat of same configuration as $\mathrm{R}-152$ I19.9 gas Si 2×10^{17} DOPSIL pellet
	2	3.9	1.8	109	10.9/17.0	150	
	3	3.4	1.9/2.6	95	7.8/12.8	155/60	
	4	3.5	1.8	86	9.9/13.2	115	
	5		1.8	77	9.6/13.1	113	
	6	3.2	1.7/2.1	198	8.0/11.7	165/110	
R-155	1	5.5	2.0	41			Provide independent experience to 2nd furnace operator. Same configuration as R -152
	2	5.2	2.0	95	8.7/13.5	200	
	3		2.0				
	4		2.0				
	5		2.0	20	9.9/11.1	150	
	6		2.0	101	9.4/17.0	113	
$\mathrm{R}-156$	1	3.4	1.9	65	8.4/11.4	160	Test new lot of crucibles in known configuration, same as $\mathrm{R}-152$ 119.5 gm Si 2×1017 DOPSIL pellet Oxide in slot
	2	3.7	1.9	67	9.7/13.0	162	
	3	2.7	1.9	57	10.4/13.3	146	
R-157			1.9	217	$9.7 / 26.2$		Gather more growth data Measure melt surface temperatures Same configuration as R-152 $120.6 \text { gin } \mathrm{Si}$ 2×10^{17} DOPSIL Pellet
	2	3.0	1.9	30	10/11. 5	119	
	3	2.8	1.8	221	8.6/20.2	140	
	4	2.8	1.8/2.6	120	10.8/12.8	122/58	

GROHTH RUN DETALL SURMARY
Length Vidth Thickness Ctil Coments modeling input.
eratures.
Test growth wi Test growth with higher melt level
Sare configuration as R-152 134.7 gm Si
2×10^{17} DOPSIL Pellet
Reneat run with high nelt level Same configuration as R-152
134.4 gm Si
2×1017 DOPSIL. Pellet.
Test new lid configuration.
Straight slot 6.67 cm long $\times 0.64 \mathrm{~cm}$ vide Lid no. -10 .
Repeat of R-162
133.2 gms. Si
2×10^{17} DOPSIL. Pellet Pull Rate
cm/min
ROU
Web No.
?
Dry run te
No web) prowth
neasure susceptor temperatures for

——um

Lenpth

$R-1: 8$
$R-159$
P-160
R-161
R-162 Run aborted due to poser failure after melting.
1.9
web.
$88 \quad 11.8 / 18.4 \quad 210$
165
220
run

220
183
163
145
138
146
120
$11.6 / 22.6$
$11.1 / 17.6$
出き
Rur aborted dite to loss of power.
xyখknas TIviag nny hinoyo

$$
\begin{aligned}
& \begin{array}{l}
\text { Comments } \\
\text { Test new lid configuration: } \\
6.4 \times 66.7 \text { mm straight slot, } \\
\text { beveled on ends only, beginning } \\
9.5 \text { mm from ends } \\
118.9 \text { gm Si } \\
2 \times 10^{17} \text { DOPSIL pellet } \\
\text { Bevel on above lid (R-170) slot } \\
\text { extended additional } 6.4 \text { mm towards } \\
\text { center } \\
113.6 \text { gm Si, } 2 \text { x } 10^{17} \text { DOPSIL pe11et } \\
\text { Test effect of wider slot. Slot of } \\
\text { above lid (R-171) widened to } 7.4 \text { mm } \\
124.0 \text { gm Si. } \\
2 \times 10^{17} \text { DOPSIL pellet } \\
\text { Repeat of R-172 } \\
123.1 \text { gm Si } \\
2 \times 10^{17} \text { DOPSIL pellet }
\end{array}
\end{aligned}
$$

DESIGN DRAWINGS FOR SILICON WEB GROWTH FACILITY Date of Issue 22, September, 1977
C. S. Duncan

Contract No. 954654

This work was performed for the Jet Propulsion Laboratory, California Institute of Technology, under NASA Jontract NAS7-100 for the U. S. Energy Research and Development Administration, Division of Solar Energy.

The JPL Low-Cost Silicon Solar Array Project is funded by ERDA and forms part of the ERDA Photovoltaic Conversion Program to inftiate a major effort toward the development of low-cost solar arrays.

Eeproor vaut							
DRAHMGL LST							
Top Cover ph des							
3 3 TOPR Rousk strs det		${ }^{\frac{29}{30}}$					
DEtAI	S52004, 31						
WEE GUIDE DET'S							
detalls							
- Knob detalis	$257 C 034$ 34 $257 C 074$ 35						
1ROO HOUSIMG SUE ASS							
12 BACK Cover welent	$\frac{257251 / 36}{2572061 / 37}$						
- Br'G Sup ort rrame	${ }^{26132630} 38{ }^{\text {a }}$						
${ }^{5}$ Stodage rel Wllom'	2613634 39						
if vaclum elbow Welomt							
	${ }^{2613650} 43$						
21) OVAL W WRK COML DET	${ }^{2613664.45}$						
12. OVAL SHIELOET		${ }^{2613 C 82,48} \frac{14}{2413 c 83.49}$					
- 76.1 Rounv Work Coll Ass	2613c88 50						
127 WEE GU1DE SUBASS	$\frac{2614 \operatorname{cos~} 5^{2}}{261418}$						
Slicon we	FUENACE MOD-2						
\%							
					*		

DRAWING LIST

Name of apparatus SILICON WEE FURNACE MOD-2

ENGR S.DUNCAN

WESTINGHOUSE FORM 6541J

PAGE		
3 OF 3	SUE. LETTER	SUR. LETTER

COMOUTI FRAME/

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS ORIGINAL PAGE ROOR QUAEITX

$$
\text { awg } 26 i 3595
$$

$138-32$ THD
CHAM. 0.45°
CHAM
 REMOVE SHARPEDGE .156

[^0]: during growth.

 * Strong drift of hold" during growth

