211 research outputs found

    Climatological predictions of the auroral zone locations driven by moderate and severe space weather events

    Get PDF
    Auroral zones are regions where, in an average sense, aurorae due to solar activity are most likely spotted. Their shape and, similarly, the geographical locations most vulnerable to extreme space weather events (which we term β€˜danger zones’) are modulated by Earth’s time-dependent internal magnetic field whose structure changes on yearly to decadal timescales. Strategies for mitigating ground-based space weather impacts over the next few decades can benefit from accurate forecasts of this evolution. Existing auroral zone forecasts use simplified assumptions of geomagnetic field variations. By harnessing the capability of modern geomagnetic field forecasts based on the dynamics of Earth’s core we estimate the evolution of the auroral zones and of the danger zones over the next 50 years. Our results predict that space-weather related risk will not change significantly in Europe, Australia and New Zealand. Mid-to-high latitude cities such as Edinburgh, Copenhagen and Dunedin will remain in high-risk regions. However, northward change of the auroral and danger zones over North America will likely cause urban centres such as Edmonton and Labrador City to be exposed by 2070 to the potential impact of severe solar activity

    Digital Quantum Simulation of the Statistical Mechanics of a Frustrated Magnet

    Full text link
    Many interesting problems in physics, chemistry, and computer science are equivalent to problems of interacting spins. However, most of these problems require computational resources that are out of reach by classical computers. A promising solution to overcome this challenge is to exploit the laws of quantum mechanics to perform simulation. Several "analog" quantum simulations of interacting spin systems have been realized experimentally. However, relying on adiabatic techniques, these simulations are limited to preparing ground states only. Here we report the first experimental results on a "digital" quantum simulation on thermal states; we simulated a three-spin frustrated magnet, a building block of spin ice, with an NMR quantum information processor, and we are able to explore the phase diagram of the system at any simulated temperature and external field. These results serve as a guide for identifying the challenges for performing quantum simulation on physical systems at finite temperatures, and pave the way towards large scale experimental simulations of open quantum systems in condensed matter physics and chemistry.Comment: 7 pages for the main text plus 6 pages for the supplementary material

    COrE (Cosmic Origins Explorer) A White Paper

    Full text link
    COrE (Cosmic Origins Explorer) is a fourth-generation full-sky, microwave-band satellite recently proposed to ESA within Cosmic Vision 2015-2025. COrE will provide maps of the microwave sky in polarization and temperature in 15 frequency bands, ranging from 45 GHz to 795 GHz, with an angular resolution ranging from 23 arcmin (45 GHz) and 1.3 arcmin (795 GHz) and sensitivities roughly 10 to 30 times better than PLANCK (depending on the frequency channel). The COrE mission will lead to breakthrough science in a wide range of areas, ranging from primordial cosmology to galactic and extragalactic science. COrE is designed to detect the primordial gravitational waves generated during the epoch of cosmic inflation at more than 3Οƒ3\sigma for r=(T/S)>=10βˆ’3r=(T/S)>=10^{-3}. It will also measure the CMB gravitational lensing deflection power spectrum to the cosmic variance limit on all linear scales, allowing us to probe absolute neutrino masses better than laboratory experiments and down to plausible values suggested by the neutrino oscillation data. COrE will also search for primordial non-Gaussianity with significant improvements over Planck in its ability to constrain the shape (and amplitude) of non-Gaussianity. In the areas of galactic and extragalactic science, in its highest frequency channels COrE will provide maps of the galactic polarized dust emission allowing us to map the galactic magnetic field in areas of diffuse emission not otherwise accessible to probe the initial conditions for star formation. COrE will also map the galactic synchrotron emission thirty times better than PLANCK. This White Paper reviews the COrE science program, our simulations on foreground subtraction, and the proposed instrumental configuration.Comment: 90 pages Latex 15 figures (revised 28 April 2011, references added, minor errors corrected

    Pilot optical alignment

    Get PDF
    PILOT (Polarized Instrument for Long wavelength Observations of the Tenuous interstellar medium) is a balloonborne astronomy experiment designed to study the polarization of dust emission in the diffuse interstellar medium in our Galaxy. The PILOT instrument allows observations at wavelengths 240 ΞΌm and 550 ΞΌm with an angular resolution of about two arcminutes. The observations performed during the two first flights performed from Timmins, Ontario Canada, and from Alice-springs, Australia, respectively in September 2015 and in April 2017 have demonstrated the good performances of the instrument. Pilot optics is composed of an off axis Gregorian type telescope combined with a refractive re-imager system. All optical elements, except the primary mirror, which is at ambient temperature, are inside a cryostat and cooled down to 3K. The whole optical system is aligned on ground at room temperature using dedicated means and procedures in order to keep the tight requirements on the focus position and ensure the instrument optical performances during the various phases of a flight. We’ll present the optical performances and the firsts results obtained during the two first flight campaigns. The talk describes the system analysis, the alignment methods, and finally the inflight performances

    Planck intermediate results. XLI. A map of lensing-induced B-modes

    Get PDF
    The secondary cosmic microwave background (CMB) BB-modes stem from the post-decoupling distortion of the polarization EE-modes due to the gravitational lensing effect of large-scale structures. These lensing-induced BB-modes constitute both a valuable probe of the dark matter distribution and an important contaminant for the extraction of the primary CMB BB-modes from inflation. Planck provides accurate nearly all-sky measurements of both the polarization EE-modes and the integrated mass distribution via the reconstruction of the CMB lensing potential. By combining these two data products, we have produced an all-sky template map of the lensing-induced BB-modes using a real-space algorithm that minimizes the impact of sky masks. The cross-correlation of this template with an observed (primordial and secondary) BB-mode map can be used to measure the lensing BB-mode power spectrum at multipoles up to 20002000. In particular, when cross-correlating with the BB-mode contribution directly derived from the Planck polarization maps, we obtain lensing-induced BB-mode power spectrum measurement at a significance level of 12 σ12\,\sigma, which agrees with the theoretical expectation derived from the Planck best-fit Ξ›\LambdaCDM model. This unique nearly all-sky secondary BB-mode template, which includes the lensing-induced information from intermediate to small (10≲ℓ≲100010\lesssim \ell\lesssim 1000) angular scales, is delivered as part of the Planck 2015 public data release. It will be particularly useful for experiments searching for primordial BB-modes, such as BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of the lensing-induced contribution to the measured total CMB BB-modes.Comment: 20 pages, 12 figures; Accepted for publication in A&A; The B-mode map is part of the PR2-2015 Cosmology Products; available as Lensing Products in the Planck Legacy Archive http://pla.esac.esa.int/pla/#cosmology; and described in the 'Explanatory Supplement' https://wiki.cosmos.esa.int/planckpla2015/index.php/Specially_processed_maps#2015_Lensing-induced_B-mode_ma

    The geometry of the magnetic field in the central molecular zone measured by PILOT

    Get PDF
    We present the first far infrared (FIR) dust emission polarization map covering the full extent of Milky Way’s central molecular zone (CMZ). The data, obtained with the PILOT balloon-borne experiment, covers the Galactic center region βˆ’ 2Β° < β„“ < 2Β°, βˆ’ 4Β° < b < 3Β° at a wavelength of 240 ΞΌm and an angular resolution of 2.2β€². From our measured dust polarization angles, we infer a magnetic field orientation projected onto the plane of the sky (POS) that is remarkably ordered over the full extent of the CMZ, with an average tilt angle of ≃22Β° clockwise with respect to the Galactic plane. Our results confirm previous claims that the field traced by dust polarized emission is oriented nearly orthogonally to the field traced by GHz radio synchrotron emission in the Galactic center region. The observed field structure is globally compatible with the latest Planck polarization data at 353 and 217 GHz. Upon subtraction of the extended emission in our data, the mean field orientation that we obtain shows good agreement with the mean field orientation measured at higher angular resolution by the JCMT within the 20 and 50 km sβˆ’1 molecular clouds. We find no evidence that the magnetic field orientation is related to the 100 pc twisted ring structure within the CMZ. The low polarization fraction in the Galactic center region measured with Planck at 353 GHz combined with a highly ordered projected field orientation is unusual. This feature actually extends to the whole inner Galactic plane. We propose that it could be caused by the increased number of turbulent cells for the long lines of sight towards the inner Galactic plane or to dust properties specific to the inner regions of the Galaxy. Assuming equipartition between magnetic pressure and ram pressure, we obtain magnetic field strength estimates of the order of 1 mG for several CMZ molecular clouds

    A Bayesian view of murine seminal cytokine networks

    Get PDF
    It has long been established that active agents in seminal fluid are key to initiating and coordinating mating-induced immunomodulation. This is in part governed by the actions of a network of cytokine interactions which, to date, remain largely undefined, and whose interspecific evolutionary conservation is unknown. This study applied Bayesian methods to illustrate the interrelationships between seminal profiles of interleukin (IL)-1alpha, IL-1beta, IL-2, IL-4, IL-5, IL-6, IL-9, IL-10, IL-12 (p70), IL-13, IL-17, eotaxin, granulocyte-colony stimulating factor (G-CSF), granulocyte macrophage-colony stimulating factor (GM-CSF), interferon (IFN)-gamma, keratinocyte-derived chemokine (KC), monocyte chemoattractant protein (MCP-1), macrophage inflammatory protein (MIP-1) alpha, MIP-1beta, regulated on activation normal T cell expressed and secreted (RANTES), tumour necrosis factor (TNF)-alpha, leptin, inducible protein (IP)-10 and vascular endothelial growth factor (VEGF) in a rat model. IL-2, IL-9, IL-12 (p70), IL-13, IL-18, eotaxin, IFN-gamma, IP-10, KC, leptin, MCP-1, MIP-1alpha and TNF-alpha were significantly higher in serum, whilst IL-1beta, IL-5, IL-6, IL-10, IL-17, G-CSF and GM-CSF were significantly higher in seminal fluid. When compared to mouse profiles, only G-CSF was present at significantly higher levels in the seminal fluid in both species. Bayesian modelling highlighted key shared features across mouse and rat networks, namely TNF-alpha as the terminal node in both serum and seminal plasma, and MCP-1 as a central coordinator of seminal cytokine networks through the intermediary of KC and RANTES. These findings reveal a marked interspecific conservation of seminal cytokine networks

    Hyperleptinemia Is Required for the Development of Leptin Resistance

    Get PDF
    Leptin regulates body weight by signaling to the brain the availability of energy stored as fat. This negative feedback loop becomes disrupted in most obese individuals, resulting in a state known as leptin resistance. The physiological causes of leptin resistance remain poorly understood. Here we test the hypothesis that hyperleptinemia is required for the development of leptin resistance in diet-induced obese mice. We show that mice whose plasma leptin has been clamped to lean levels develop obesity in response to a high-fat diet, and the magnitude of this obesity is indistinguishable from wild-type controls. Yet these obese animals with constant low levels of plasma leptin remain highly sensitive to exogenous leptin even after long-term exposure to a high fat diet. This shows that dietary fats alone are insufficient to block the response to leptin. The data also suggest that hyperleptinemia itself can contribute to leptin resistance by downregulating cellular response to leptin as has been shown for other hormones

    Manual therapy with and without vestibular rehabilitation for cervicogenic dizziness: a systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Manual therapy is an intervention commonly advocated in the management of dizziness of a suspected cervical origin. Vestibular rehabilitation exercises have been shown to be effective in the treatment of unilateral peripheral vestibular disorders, and have also been suggested in the literature as an adjunct in the treatment of cervicogenic dizziness. The purpose of this systematic review is to evaluate the evidence for manual therapy, in conjunction with or without vestibular rehabilitation, in the management of cervicogenic dizziness.</p> <p>Methods</p> <p>A comprehensive search was conducted in the databases Scopus, Mantis, CINHAL and the Cochrane Library for terms related to manual therapy, vestibular rehabilitation and cervicogenic dizziness. Included studies were assessed using the Maastricht-Amsterdam criteria.</p> <p>Results</p> <p>A total of fifteen articles reporting findings from thirteen unique investigations, including five randomised controlled trials and eight prospective, non-controlled cohort studies were included in this review. The methodological quality of the included studies was generally poor to moderate. All but one study reported improvement in dizziness following either unimodal or multimodal manual therapy interventions. Some studies reported improvements in postural stability, joint positioning, range of motion, muscle tenderness, neck pain and vertebrobasilar artery blood flow velocity.</p> <p>Discussion</p> <p>Although it has been argued that manual therapy combined with vestibular rehabilitation may be superior in the treatment of cervicogenic dizziness, there are currently no observational and experimental studies demonstrating such effects. A rationale for combining manual therapy and vestibular rehabilitation in the management of cervicogenic dizziness is presented.</p> <p>Conclusion</p> <p>There is moderate evidence to support the use of manual therapy, in particular spinal mobilisation and manipulation, for cervicogenic dizziness. The evidence for combining manual therapy and vestibular rehabilitation in the management of cervicogenic dizziness is lacking. Further research to elucidate potential synergistic effects of manual therapy and vestibular rehabilitation is strongly recommended.</p

    Interspecific Proteomic Comparisons Reveal Ash Phloem Genes Potentially Involved in Constitutive Resistance to the Emerald Ash Borer

    Get PDF
    The emerald ash borer (Agrilus planipennis) is an invasive wood-boring beetle that has killed millions of ash trees since its accidental introduction to North America. All North American ash species (Fraxinus spp.) that emerald ash borer has encountered so far are susceptible, while an Asian species, Manchurian ash (F. mandshurica), which shares an evolutionary history with emerald ash borer, is resistant. Phylogenetic evidence places North American black ash (F. nigra) and Manchurian ash in the same clade and section, yet black ash is highly susceptible to the emerald ash borer. This contrast provides an opportunity to compare the genetic traits of the two species and identify those with a potential role in defense/resistance. We used Difference Gel Electrophoresis (DIGE) to compare the phloem proteomes of resistant Manchurian to susceptible black, green, and white ash. Differentially expressed proteins associated with the resistant Manchurian ash when compared to the susceptible ash species were identified using nano-LC-MS/MS and putative identities assigned. Proteomic differences were strongly associated with the phylogenetic relationships among the four species. Proteins identified in Manchurian ash potentially associated with its resistance to emerald ash borer include a PR-10 protein, an aspartic protease, a phenylcoumaran benzylic ether reductase (PCBER), and a thylakoid-bound ascorbate peroxidase. Discovery of resistance-related proteins in Asian species will inform approaches in which resistance genes can be introgressed into North American ash species. The generation of resistant North American ash genotypes can be used in forest ecosystem restoration and urban plantings following the wake of the emerald ash borer invasion
    • …
    corecore