24 research outputs found

    Assessing causal relationships in genomics: From Bradford-Hill criteria to complex gene-environment interactions and directed acyclic graphs

    Get PDF
    Observational studies of human health and disease (basic, clinical and epidemiological) are vulnerable to methodological problems -such as selection bias and confounding- that make causal inferences problematic. Gene-disease associations are no exception, as they are commonly investigated using observational designs. A rich body of knowledge exists in medicine and epidemiology on the assessment of causal relationships involving personal and environmental causes of disease; it includes seminal causal criteria developed by Austin Bradford Hill and more recently applied directed acyclic graphs (DAGs). However, such knowledge has seldom been applied to assess causal relationships in clinical genetics and genomics, even in studies aimed at making inferences relevant for human health. Conversely, incorporating genetic causal knowledge into clinical and epidemiological causal reasoning is still a largely unexplored area

    Exclusive ρ0\rho^0 electroproduction on the proton at CLAS

    Full text link
    The epepρ0e p\to e^\prime p \rho^0 reaction has been measured, using the 5.754 GeV electron beam of Jefferson Lab and the CLAS detector. This represents the largest ever set of data for this reaction in the valence region. Integrated and differential cross sections are presented. The WW, Q2Q^2 and tt dependences of the cross section are compared to theoretical calculations based on tt-channel meson-exchange Regge theory on the one hand and on quark handbag diagrams related to Generalized Parton Distributions (GPDs) on the other hand. The Regge approach can describe at the \approx 30% level most of the features of the present data while the two GPD calculations that are presented in this article which succesfully reproduce the high energy data strongly underestimate the present data. The question is then raised whether this discrepancy originates from an incomplete or inexact way of modelling the GPDs or the associated hard scattering amplitude or whether the GPD formalism is simply inapplicable in this region due to higher-twists contributions, incalculable at present.Comment: 29 pages, 29 figure

    Benefits of ICU admission in critically ill patients: Whether instrumental variable methods or propensity scores should be used

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The assessment of the causal effect of Intensive Care Unit (ICU) admission generally involves usual observational designs and thus requires controlling for confounding variables. Instrumental variable analysis is an econometric technique that allows causal inferences of the effectiveness of some treatments during situations to be made when a randomized trial has not been or cannot be conducted. This technique relies on the existence of one variable or "instrument" that is supposed to achieve similar observations with a different treatment for "arbitrary" reasons, thus inducing substantial variation in the treatment decision with no direct effect on the outcome. The objective of the study was to assess the benefit in terms of hospital mortality of ICU admission in a cohort of patients proposed for ICU admission (ELDICUS cohort).</p> <p>Methods</p> <p>Using this cohort of 8,201 patients triaged for ICU (including 6,752 (82.3%) patients admitted), the benefit of ICU admission was evaluated using 3 different approaches: instrumental variables, standard regression and propensity score matched analyses. We further evaluated the results obtained using different instrumental variable methods that have been proposed for dichotomous outcomes.</p> <p>Results</p> <p>The physician's main specialization was found to be the best instrument. All instrumental variable models adequately reduced baseline imbalances, but failed to show a significant effect of ICU admission on hospital mortality, with confidence intervals far higher than those obtained in standard or propensity-based analyses.</p> <p>Conclusions</p> <p>Instrumental variable methods offer an appealing alternative to handle the selection bias related to nonrandomized designs, especially when the presence of significant unmeasured confounding is suspected. Applied to the ELDICUS database, this analysis failed to show any significant beneficial effect of ICU admission on hospital mortality. This result could be due to the lack of statistical power of these methods.</p

    Serum Uric Acid and Adiposity: Deciphering Causality Using a Bidirectional Mendelian Randomization Approach

    Get PDF
    Background: Although the relationship between serum uric acid (SUA) and adiposity is well established, the direction of the causality is still unclear in the presence of conflicting evidences. We used a bidirectional Mendelian randomization approach to explore the nature and direction of causality between SUA and adiposity in a population-based study of Caucasians aged 35 to 75 years. Methods and Findings: We used, as instrumental variables, rs6855911 within the SUA gene SLC2A9 in one direction, and combinations of SNPs within the adiposity genes FTO, MC4R and TMEM18 in the other direction. Adiposity markers included weight, body mass index, waist circumference and fat mass. We applied a two-stage least squares regression: a regression of SUA/adiposity markers on our instruments in the first stage and a regression of the response of interest on the fitted values from the first stage regression in the second stage. SUA explained by the SLC2A9 instrument was not associated to fat mass (regression coefficient [95 % confidence interval]: 0.05 [20.10, 0.19] for fat mass) contrasting with the ordinary least square estimate (0.37 [0.34, 0.40]). By contrast, fat mass explained by genetic variants of the FTO, MC4R and TMEM18 genes was positively and significantly associated to SUA (0.31 [0.01, 0.62]), similar to the ordinary least square estimate (0.27 [0.25, 0.29]). Results were similar for the other adiposity markers. Conclusions: Using a bidirectional Mendelian randomization approach in adult Caucasians, our findings suggest tha

    Age at Menarche and Time Spent in Education: A Mendelian Randomization Study.

    Get PDF
    Menarche signifies the primary event in female puberty and is associated with changes in self-identity. It is not clear whether earlier puberty causes girls to spend less time in education. Observational studies on this topic are likely to be affected by confounding environmental factors. The Mendelian randomization (MR) approach addresses these issues by using genetic variants (such as single nucleotide polymorphisms, SNPs) as proxies for the risk factor of interest. We use this technique to explore whether there is a causal effect of age at menarche on time spent in education. Instruments and SNP-age at menarche estimates are identified from a Genome Wide Association Study (GWAS) meta-analysis of 182,416 women of European descent. The effects of instruments on time spent in education are estimated using a GWAS meta-analysis of 118,443 women performed by the Social Science Genetic Association Consortium (SSGAC). In our main analysis, we demonstrate a small but statistically significant causal effect of age at menarche on time spent in education: a 1 year increase in age at menarche is associated with 0.14 years (53 days) increase in time spent in education (95% CI 0.10-0.21 years, p = 3.5 × 10-8). The causal effect is confirmed in sensitivity analyses. In identifying this positive causal effect of age at menarche on time spent in education, we offer further insight into the social effects of puberty in girls

    Measurement of the total photoabsorption cross section on a proton in the energy range 600–1500 MeV at the GRAAL

    No full text
    The total photoabsorption cross section on a free proton was measured at the GRAAL facility in the energy range Eγ = 600−1500MeV.The large-aperture LAGRANγE detector and a liquid hydrogen target were used in the experiment performed with a back-scattered Compton gamma beam. To improve the accuracy, two alternative methods were employed. First, a subtraction method of using emptytarget measurements allowed the cross section σtot to be evaluated directly because of a low level of the electromagnetic background. Second, an algorithm for evaluating σtot on the basis of summing the dominating partial cross sections was developed. Experimental results obtained for σtot by the two methods are compared with existing data

    Double pi(0) photoproduction on the neutron at GRAAL

    Get PDF
    The photoproduction of double pi(0) on the neutron is studied in the beam energy range of 0.6 up to 1.5 GeV, using a liquid deuterium target. The cross section and the beam asymmetry are extracted and compared to those previously obtained on a proton target. The theoretical interpretation of these results is given using different models. (c) 2007 Elsevier B.V. All rights reserved

    Photoproduction of two pions and omega mesons at GRAAL

    No full text
    The photoproduction of 2 pions and omega mesons at GRAAL experiment is presented. The beam asymmetry Sigma observable together with the cross sections are studied. Preliminary data are obtained and their comparison with theoretical predictions is discussed
    corecore