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0.10–0.21  years, p = 3.5 × 10−8). The causal effect is con-
firmed in sensitivity analyses. In identifying this positive 
causal effect of age at menarche on time spent in education, 
we offer further insight into the social effects of puberty in 
girls.

Keywords  Menarche · Puberty · Education · Educational 
attainment · Mendelian randomization

Introduction

Puberty is a time of physiological change in the human 
body, and its effects extend into the social domains of life 
(Stattin and Magnusson 1990). In girls, menarche signifies 
the primary event in puberty. The initiation of the menstrual 
cycle is associated with reorganization of the self-image, 
changes in peer relationships, and increased engagement 
in risk behaviours (Crosnoe 2000). In adolescent females, 
elevated levels of gonadal hormones follow menarche and 
influence behavioural development (Schulz and Sisk 2016). 
Heightened neural plasticity during puberty may predis-
pose to a greater sensitivity to hormones (Piekarski et  al. 
2016). The significance of menarche as a life-course tran-
sition varies with its timing (Schulz and Sisk 2016), and 
previous observational work has suggested that girls with 
early puberty have a more difficult journey through school 
(Cavanagh et  al. 2007). While the latter goes on to pro-
pose that earlier puberty might be causally associated with 
less time spent in education, this has not yet been demon-
strated. Furthermore, the influence of potentially confound-
ing variables must be reliably excluded to ensure that spu-
rious associations are not interpreted as causal. Previous 
work has demonstrated age of menarche to be influenced 
by obesity (Dvornyk and Waqar ul 2012), family size and 
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socio-demographic factors (Chavarro et  al. 2004), all of 
which are also associated with less time spent in education 
(Winding et al. 2013). Therefore, observational studies on 
this topic may be limited by confounding, making it diffi-
cult to decipher causal effects.

In such situations, the Mendelian randomization (MR) 
technique can often be used to overcome these limitations 
by using single nucleotide genetic polymorphisms (SNPs) 
as instrumental variables (IVs) to explore the direction 
and magnitude of any causal effect of age at menarche on 
time spent in education (Davey Smith and Ebrahim 2005). 
Genes are allocated randomly at the time of conception and 
are therefore independent of classical confounding. The 
demonstration that SNPs known to modify age at menarche 
also modify time spent in education can provide indirect 
evidence of a causal effect of age at menarche on time spent 
in education, provided that the necessary assumptions are 
satisfied (Sheehan et  al. 2008). Indeed, such an approach 
has been previously used to show that earlier menarche 
causes a higher level of depressive symptoms at 14 years 
(Sequeira et al. 2016).

Here we use MR to investigate the causal effect of age 
at menarche on time spent in education. By gaining insight 
into the effect of age at menarche on time spent in educa-
tion, we hope to further our understanding of the social 
implications of this physiological and psychological 
transition.

Methods

SNP‑age at menarche association estimates

SNPs for use as instruments in the MR analysis were iden-
tified from a GWAS meta-analysis of 57 studies in 182,416 
women of European descent, where age at menarche was 
established by self-reporting, and analyses within each 
study were adjusted for birth year, to account for secular 
trends, and genomic control, to account for population 
stratification (Perry et  al. 2014). This identified 122 inde-
pendent SNPs at 106 genomic loci to be associated with 
age at menarche (p value < 5 × 10−8). We measure the 
strength of the instruments using the F statistic, which is 
a function of the magnitude and precision of their genetic 
effects (Li and Martin 2002; Palmer et al. 2012).

SNP‑time spent in education association estimates

The effects of the 122 instruments on time spent in edu-
cation were estimated using a GWAS meta-analysis of 
118,443 women across 62 studies performed by the Social 
Science Genetic Association Consortium (SSGAC), the 
summary estimates for which can be downloaded from 

http://www.thessgac.org/data (Okbay et  al. 2016). The 
analysis was performed on women, aged 30 years or above, 
of European descent whose mother tongue was the same 
as the main language of the country in which they were 
educated (Okbay et al. 2016). Although study populations 
were heterogeneous in terms of their educational systems, 
with different survey questions and data registers used to 
evaluate time spent in education across studies, compara-
bility was maximized by mapping each major educational 
qualification on to one of seven categories of the 1997 
International Standard Classification of Education (ISCED) 
of the United Nations Educational, Scientific and Cultural 
Organization, and then imputing a time spent in education 
equivalent for each ISCED category (Okbay et al. 2016).

Mendelian randomization estimates

Individual MR estimates for each of the 122 SNPs were 
derived using the Wald estimator, which is the ratio of the 
estimates of the two genetic associations (i.e. SNP-time 
spent in education estimate over SNP-age at menarche esti-
mate) (Didelez et  al. 2010), with standard error derived 
using the Delta method (Thompson et al. 2016). MR esti-
mates across the individual SNPs were pooled using a 
fixed-effect inverse-variance weighted (IVW) meta-analy-
sis. This approach assumes an additive model with no inter-
actions for the SNP-age at menarche and SNP-time spent in 
education relationships.

Sensitivity analyses

A critical assumption in MR is the absence of pleiotropy—
that genetic instruments only modify time spent in educa-
tion through age at menarche and not by any other inde-
pendent pathways. In the absence of this condition, MR 
could produce biased estimates (Sheehan et  al. 2008). In 
the meta-analysis of the 122 MR estimates, the I2 index 
(which we call I2

MR) describes the percentage of total varia-
tion in MR estimates across instruments that arises because 
of heterogeneity rather than chance, and can be used as a 
proxy for pleiotropy (Del Greco M et al. 2015). We define 
heterogeneity to be present if I2

MR > 25%. To address plei-
otropy and other possible sources of bias in this work, fur-
ther sensitivity analyses were performed:

1.	 MR-Egger This is an adaptation of Egger regression 
applied to the context of two-sample MR that uses 
multiple genetic variants (Bowden et  al. 2015). The 
MR-Egger approach can be used to provide unbi-
ased results in the presence of pleiotropic instruments 
under the assumption that the magnitude of pleiotropic 
effects is independent of the magnitude of the corre-
sponding SNP-age at menarche effects (Bowden et al. 

http://www.thessgac.org/data
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2015). The degree of heterogeneity in the SNP-age at 
menarche estimates generated by the different instru-
ments, as measured using the I2 statistic (called I2

GX 
here), is used to quantify any potential bias arising in 
the MR-Egger analysis due to measurement error. An 
I2

GX estimate close to 100% would suggest that such 
a phenomenon is not creating bias, as greater hetero-
geneity reduces regression dilution with MR-Egger 
(Bowden et al. 2016b).

2.	 Weighted median estimator Used as a further sensi-
tivity analysis here, this approach orders the MR esti-
mates generated using each instrument separately by 
the inverse of their variances; selecting the median 
result provides a single MR estimate, with confi-
dence intervals generated using a parametric bootstrap 
method (Bowden et  al. 2016a). The weighted median 
estimator does not require that the magnitude of any 
pleiotropic effects of the instruments are uncorrelated 
to their effects on the intermediate phenotype, as MR-
Egger does, but instead assumes that at least half of the 
instruments are valid (Bowden et al. 2016b).

3.	 Exclusion of instruments also associated with body 
mass index (BMI) Age at menarche has been previously 
demonstrated to be associated with obesity (Dvornyk 
and Waqar ul 2012). If BMI is also associated with 
time spent in education, then any instruments for age 
at menarche that are also associated with BMI might 
be introducing pleiotropic effects by this mechanism. 
Sensivity analysis was therefore also performed by 
repeating the MR-analysis using the fixed-effect IVW 
meta-analysis approach with the exclusion of SNPs 
also associated with BMI at genome-wide significance 
level (Supplementary Table 1).

4.	 Unweighted allele score The use of SNP-age at 
menarche estimates generated from the GWAS discov-
ery analysis rather than the replication analysis, which 
had a sample size 20 times smaller (8689 vs. 182,416) 
(Perry et al. 2014), may result in the possible upward 
bias that is typical of discovery stage results (Ioannidis 
et  al. 2001). MR analysis using a fixed-effect IVW 
meta-analysis of SNP-time spent in education associa-
tion estimates across the 122 SNPs, which is equivalent 
to an “unweighted allele score” (Charoen et al. 2016), 
is not affected by this form of bias and is therefore used 
here as a sensitivity analysis.

5.	 SNP-time spent in education estimates for men using 
an unweighted allele score As a check that the SNP-
time spent in education association observed in women 
is indeed driven by mediation through age at menarche 
and not via alternative pathways, as implied by our 
instrumental variable assumptions, we estimate this 
association in men using an unweighted allele score 
for the 122 age at menarche instruments. Since men 

do not undergo menarche, the exposure under investi-
gation, lack of any association in men would provide 
further evidence that an association in women is due to 
a causal effect of age at menarche on time spent in edu-
cation. These SNP-time spent in education estimates 
were obtained from a GWAS meta-analysis of 147,474 
men also performed by the SSGAC, the summary esti-
mates for which can be downloaded from http://www.
thessgac.org/data (Okbay et al. 2016).

All analyses were performed using Stata 14 (StataCorp 
LP) and R version 3.3.2 (R Core Team).

Results

Supplementary Tables 2 and 3 report individual SNP esti-
mates of the per-allele effects on age at menarche (years) 
and time spent in education for women (standard devia-
tion change in time spent in education, measured in years), 
respectively, while Supplementary Table  4 reports indi-
vidual SNP MR estimates for the causal effect of age at 
menarche on time spent in education (standard deviation 
change in time spent in education, measured in years, per 
year increase in age at menarche). The considered SNPs are 
all strong instruments for age at menarche, with F statistics 
ranging from 25 to 576 (Supplementary Table 2), which are 
all greater than the recommended threshold of 10 (Lawlor 
et al. 2008).

The fixed-effect IVW meta-analysis of all 122 SNPs 
shows a statistically significant causal effect of age at 
menarche on time spent in education: a 1 year increase in 
age at menarche is associated with a 0.04 standard devia-
tion units increase in time spent in education (95% CI 
0.03–0.06), with a p value of 3.5 × 10−8 (Supplementary 
Fig.  1). With the standard deviation of time in education 
reported as 3.6 years (Okbay et  al. 2016), this equates to 
0.14 years (53 days, 95% CI 0.10–0.21  years). However, 
there is evidence of pleiotropy among instruments, with a 
between-instrument I2

MR of 48% (95% CI 36–58%). Fur-
ther sensitivity analyses were performed, and MR-Egger 
regression analysis estimated that a 1 year increase in age 
at menarche is associated with 0.10 standard deviation 
increase in time spent in education (95% CI 0.03–0.18, 
p = 0.01) (Supplementary Fig.  1). The I2

GX statistic is 
85%, suggesting that there is no major evidence of meas-
urement error biasing MR-Egger analysis (Bowden et  al. 
2016b). The MR-Egger intercept is −0.002 (95% CI 
−0.006 to 0.001, p = 0.139), suggesting no evidence of 
directional pleiotropy (Bowden et  al. 2015). Supplemen-
tary Fig.  2 shows the funnel plot of the minor allele fre-
quency corrected GX estimates by the GY/GX estimates; 
there is no major asymmetry around the fixed-effect IVW 

http://www.thessgac.org/data
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meta-analysis causal estimate (dashed red line) to suggest 
directional pleiotropy.

The weighted median approach estimates that a 1 year 
increase in age at menarche is associated with 0.05 stand-
ard deviation increase in time spent in education (95% 
CI 0.03–0.07, p = 7.34 × 10−5) (Supplementary Fig.  1). 
Fixed-effect IVW meta-analysis after excluding the 12 
SNPs associated with BMI (Supplementary Table  1) also 
shows a statistically significant causal effect of age at 
menarche on time spent in education: a 1 year increase in 
age at menarche is associated with 0.05 standard devia-
tion increase in time spent in education (95% CI 0.03–0.06, 
p = 1.74 × 10−8), although evidence of pleiotropy per-
sists (I2

MR 47%, 95% CI 34–58%). Thus, removing these 
12 SNPs that are associated with BMI did not have any 
major effect on the results obtained, and for this reason, the 
results of the original IVW approach are reported as the 
main analysis.

Use of an unweighted allele score for the 122 instru-
ments in women shows a statistically significant positive 
association with time spent in education (p = 3.61 × 10−7). 
This is reassuring that the causal effect of age at menarche 
on time spent in education shown by our main analysis is 
not attributable to bias due to use of SNP-age at menarche 
estimates from discovery stage results. The unweighted 
allele score is only used here to test for a causal effect of 
age at menarche on time spent in education and not to esti-
mate the magnitude of this effect.

Supplementary Table 5 reports individual SNP estimates 
for the per-allele effect of the 122 age at menarche instru-
ments on time spent in education for men. The unweighted 
allele score for the 122 age at menarche instruments using 
SNP-time spent in education estimates for men is not sig-
nificant (p = 0.72), thus strengthening our belief that the 
observed association in women is driven by mediation 
through age at menarche.

In summary, all sensitivity analyses support our findings 
of a statistically significant causal effect of age at menarche 
on time spent in education.

Discussion

We have used MR to investigate the causal effect of age at 
menarche on time spent in education. Under the required 
assumptions, this technique circumvents the classical 
confounding seen in observational studies, and our main 
(fixed-effect IVW meta-analysis of all 122 SNPs) analysis 
suggests that for every year increase in age at menarche, 
women spend an extra 53 days in education on aver-
age (95% CI 37–78 days). The main limitation of the MR 
approach is possible bias due to pleiotropic instruments, 

and we have addressed this using several sensitivity 
analyses.

The physical, behavioural and cognitive aspects of 
development that are associated with puberty vary in their 
timing. A lower age at menarche has been hypothesized to 
result in earlier physical and physiological development, 
but without matching levels of cognitive and behavioural 
development. This delay can lead to inadequate coping 
strategies, greater risk-taking behaviour, lower social com-
petence, and higher rates of internalizing and affective dis-
orders (Brooks-Gunn and Warren 1989; Stice et  al. 2004; 
Westling et  al. 2012), all of which may culminate in less 
time spent in education.

Previous work has highlighted the adverse effects of 
early puberty on self-perception, peer-relationships and 
risk-taking behaviours in girls, with consequent effects 
on performance in school (Correll 2001; Crosnoe 2000; 
Graber 2013; Mendle et al. 2007). However, there has been 
comparatively little work directly exploring the effect of 
age at menarche on time spent in education. One survey-
based observational study performed by Koivusilta et  al. 
investigating how age at menarche predicts time spent in 
education separately considered samples of 903, 1430 and 
1584 Finnish girls aged 12 years, 14 years and 16 years 
respectively (Koivusilta and Rimpela 2004). This work 
measured the timing of menarche as early (age 11 years 
or younger), average (age 12 or 13 years) or late (age 14 
years or older), with time spent in education divided into 
categories of 9–10, 11–12, 13–15 and 16–18 years. While 
ordinal logistic regression did not identify any effect of age 
at menarche on time spent in education, it is possible that 
use of ordered categorical variables, rather than continu-
ous ones, might have resulted in loss of power to detect the 
small effect size identified in our analysis. Furthermore, 
such observational work is also susceptible to the effects of 
confounding, such as from socio-demographic factors (Koi-
vusilta and Rimpela 2004), the direction of which is hard to 
predict (away from the null or towards the null).

There are a number of possible sources of bias in our 
work. The age at menarche estimates used were self-
reported and are therefore susceptible to recall bias (Perry 
et al. 2014). Furthermore, the different studies used to gen-
erate SNP-time spent in education association results were 
spread out over decades, with birth years ranging from 
1901 to 1989 (Okbay et al. 2016). The social environment 
is likely to have changed over this period, making the MR 
analysis susceptible to varying SNP-environment interac-
tions (Brennan 2004). Finally, although the use of SNP-age 
at menarche estimates generated from the GWAS discov-
ery analysis may result in upward bias (“winner’s curse”), 
we have shown that a causal effect remains when testing it 
using an unweighted allele score, which is not affected by 
this “winner’s curse”.
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In summary, we have used the MR approach to tackle 
traditional confounding in investigating the effect of age 
at menarche on time spent in education. We demonstrate 
a small positive causal effect, which offers further insight 
into the effects of puberty in girls. Given the significance 
of education on future life course, to include effects on 
health, this finding provides further insight into the social, 
psychological and physiological factors that determine time 
in education (Brennan 2004; Kingston et al. 2003; Li and 
Powdthavee 2015).
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