42 research outputs found

    Human transmissible spongiform encephalopathies in eleven countries: diagnostic pattern across time, 1993–2002

    Get PDF
    BACKGROUND: The objective of this study was to describe the diagnostic panorama of human transmissible spongiform encephalopathies across 11 countries. METHODS: From data collected for surveillance purposes, we describe annual proportions of deaths due to different human transmissible spongiform encephalopathies in eleven EUROCJD-consortium countries over the period 1993–2002, as well as variations in the use of diagnostic tests. Using logistic models we quantified international differences and changes across time. RESULTS: In general, pre-mortem use of diagnostic investigations increased with time. International differences in pathological confirmation of sporadic Creutzfeldt-Jakob disease, stable over time, were evident. Compared to their counterparts, some countries displayed remarkable patterns, such as: 1) the high proportion, increasing with time, of variant Creutzfeldt-Jakob disease in the United Kingdom, (OR 607.99 95%CI 84.72–4363.40), and France (OR 18.35, 95%CI 2.20–152.83); 2) high, decreasing proportions of iatrogenic Creutzfeldt-Jakob disease in France, (OR 5.81 95%CI 4.09–8.24), and the United Kingdom, (OR 1.54 95%CI 1.03–2.30); and, 3) high and stable ratios of genetic forms in Slovakia (OR 21.82 95%CI 12.42–38.33) and Italy (OR 2.12 95%CI 1.69–2.68). CONCLUSION: Considerable international variation in aetiological subtypes of human transmissible spongiform encephalopathies was evident over the observation period. With the exception of variant Creutzfeldt-Jakob disease and iatrogenic Creutzfeldt-Jakob disease in France and the United Kingdom, these differences persisted across time

    Novel mutation of the PRNP gene of a clinical CJD case

    Get PDF
    BACKGROUND: Transmissible spongiform encephalopathies (TSEs), a group of neurodegenerative diseases, are thought to be caused by an abnormal isoform of a naturally occurring protein known as cellular prion protein, PrP(C). The abnormal form of prion protein, PrP(Sc )accumulates in the brain of affected individuals. Both isoforms are encoded by the same prion protein gene (PRNP), and the structural changes occur post-translationally. Certain mutations in the PRNP gene result in genetic TSEs or increased susceptibility to TSEs. CASE PRESENTATION: A 70 year old woman was admitted to the hospital with severe confusion and inability to walk. Relatives recognized memory loss, gait and behavioral disturbances over a six month period prior to hospitalization. Neurological examination revealed Creutzfeldt-Jakob disease (CJD) related symptoms such as incontinence, Babinski sign and myoclonus. EEG showed periodic sharp waves typical of sporadic CJD and cerebrospinal fluid analysis (CSF) was positive for the presence of the 14-3-3-protein. As the disease progressed the patient developed akinetic mutism and died in the tenth month after onset of the disease symptoms. Unfortunately, no autopsy material was available. PRNP sequencing showed the occurrence of a point mutation on one allele at codon 193, which is altered from ACC, coding for a threonine, to ATC, encoding an isoleucine (T193I). CONCLUSION: Here we report a novel mutation of the PRNP gene found in an elderly female patient resulting in heterozygosity for isoleucine and threonine at codon 193, in which normally homozygosity for threonine is expected (T193). The patient presented typical clinical symptoms of CJD. EEG findings and the presence of the 14-3-3 protein in the CSF, contributed to CJD diagnosis, allowing the classification of this case as a probable CJD according to the World Health Organization (WHO) accepted criteria

    UK Iatrogenic Creutzfeldt-Jakob disease:Investigating human prion transmission across genotypic barriers using human tissue-based and molecular approaches

    Get PDF
    Creutzfeldt-Jakob disease (CJD) is the prototypic human prion disease that occurs most commonly in sporadic and genetic forms, but it is also transmissible and can be acquired through medical procedures, resulting in iatrogenic CJD (iCJD). The largest numbers of iCJD cases that have occurred worldwide have resulted from contaminated cadaveric pituitary-derived human growth hormone (hGH) and its use to treat primary and secondary growth hormone deficiency. We report a comprehensive, tissue-based and molecular genetic analysis of the largest series of UK hGH-iCJD cases reported to date, including in vitro kinetic molecular modelling of genotypic factors influencing prion transmission. The results show the interplay of prion strain and host genotype in governing the molecular, pathological and temporal characteristics of the UK hGH-iCJD epidemic and provide insights into the adaptive mechanisms involved when prions cross genotypic barriers. We conclude that all of the available evidence is consistent with the hypothesis that the UK hGH-iCJD epidemic resulted from transmission of the V2 human prion strain, which is associated with the second most common form of sporadic CJD

    PRNP variation in UK sporadic and variant Creutzfeldt Jakob disease highlights genetic risk factors and a novel non-synonymous polymorphism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genetic analysis of the human prion protein gene (<it>PRNP</it>) in suspect cases of Creutzfeldt-Jakob disease (CJD) is necessary for accurate diagnosis and case classification. Previous publications on the genetic variation at the <it>PRNP </it>locus have highlighted the presence of numerous polymorphisms, in addition to the well recognised one at codon 129, with significant variability between geographically distinct populations. It is therefore of interest to consider their influence on susceptibility or the clinico-pathological disease phenotype. This study aimed to characterise the frequency and effect of <it>PRNP </it>open reading frame polymorphisms other than codon 129 in both disease and control samples sourced from the United Kingdom population.</p> <p>Methods</p> <p>DNA was extracted from blood samples and genetic data obtained by full sequence analysis of the prion protein gene or by restriction fragment length polymorphism analysis using restriction enzymes specific to the gene polymorphism under investigation.</p> <p>Results</p> <p>147 of 166 confirmed cases of variant CJD (vCJD) in the UK have had <it>PRNP </it>codon 129 genotyping and all are methionine homozygous at codon 129; 118 have had full <it>PRNP </it>gene sequencing. Of the latter, 5 cases have shown other polymorphic loci: at codon 219 (2, 1.69%), at codon 202 (2, 1.69%), and a 24 bp deletion in the octapeptide repeat region (1, 0.85%). E219K and D202D were not found in sporadic CJD (sCJD) cases and therefore may represent genetic risk factors for vCJD.</p> <p>Genetic analysis of 309 confirmed UK sCJD patients showed codon 129 genotype frequencies of MM: 59.5% (n = 184), MV: 21.4% (n = 66), and VV: 19.1% (n = 59). Thirteen (4.2%) had the A117A polymorphism, one of which also had the P68P polymorphism, four (1.3%) had a 24 bp deletion, and a single patient had a novel missense variation at codon 167. As the phenotype of this latter case is similar to sCJD and in the absence of a family history of CJD, it is unknown whether this is a form of genetic CJD, or simply a neutral polymorphism.</p> <p>Conclusions</p> <p>This analysis of <it>PRNP </it>genetic variation in UK CJD patients is the first to show a comprehensive comparison with healthy individuals (n = 970) from the same population, who were genotyped for the three most common variations (codon 129, codon 117, and 24 bp deletion). These latter two genetic variations were equally frequent in UK sCJD or vCJD cases and a normal (healthy blood donor) UK population.</p

    Transmission characteristics of heterozygous cases of Creutzfeldt-Jakob disease with variable abnormal prion protein allotypes

    Get PDF
    In the human prion disease Creutzfeldt-Jakob disease (CJD), different CJD neuropathological subtypes are defined by the presence in normal prion protein (PrPC) of a methionine or valine at residue 129, by the molecular mass of the infectious prion protein PrPSc, by the pattern of PrPSc deposition, and by the distribution of spongiform change in the brain. Heterozygous cases of CJD potentially add another layer of complexity to defining CJD subtypes since PrPSc can have either a methionine (PrPSc-M129) or valine (PrPSc-V129) at residue 129. We have recently demonstrated that the relative amount of PrPSc-M129 versus PrPSc-V129, i.e. the PrPSc allotype ratio, varies between heterozygous CJD cases. In order to determine if differences in PrPSc allotype correlated with different disease phenotypes, we have inoculated 10 cases of heterozygous CJD (7 sporadic and 3 iatrogenic) into two transgenic mouse lines overexpressing PrPC with a methionine at codon 129. In one case, brain-region specific differences in PrPSc allotype appeared to correlate with differences in prion disease transmission and phenotype. In the other 9 cases inoculated, the presence of PrPSc-V129 was associated with plaque formation but differences in PrPSc allotype did not consistently correlate with disease incubation time or neuropathology. Thus, while the PrPSc allotype ratio may contribute to diverse prion phenotypes within a single brain, it does not appear to be a primary determinative factor of disease phenotype

    Brain-derived proteins in the CSF, do they correlate with brain pathology in CJD?

    Get PDF
    BACKGROUND: Brain derived proteins such as 14-3-3, neuron-specific enolase (NSE), S 100b, tau, phosphorylated tau and AÎČ(1–42 )were found to be altered in the cerebrospinal fluid (CSF) in Creutzfeldt-Jakob disease (CJD) patients. The pathogenic mechanisms leading to these abnormalities are not known, but a relation to rapid neuronal damage is assumed. No systematic analysis on brain-derived proteins in the CSF and neuropathological lesion profiles has been performed. METHODS: CSF protein levels of brain-derived proteins and the degree of spongiform changes, neuronal loss and gliosis in various brain areas were analyzed in 57 CJD patients. RESULTS: We observed three different patterns of CSF alteration associated with the degree of cortical and subcortical changes. NSE levels increased with lesion severity of subcortical areas. Tau and 14-3-3 levels increased with minor pathological changes, a negative correlation was observed with severity of cortical lesions. Levels of the physiological form of the prion protein (PrP(c)) and AÎČ(1–42 )levels correlated negatively with cortical pathology, most clearly with temporal and occipital lesions. CONCLUSION: Our results indicate that the alteration of levels of brain-derived proteins in the CSF does not only reflect the degree of neuronal damage, but it is also modified by the localization on the brain pathology. Brain specific lesion patterns have to be considered when analyzing CSF neuronal proteins
    corecore